Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Dinosaurs, Physics: Quantum Computing
Published How quantum light 'sees' quantum sound



Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electrical control of quantum phenomenon could improve future electronic devices



A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Survival of the newest: the mammals that survive mass extinctions aren't as 'boring' as scientists thought



For decades, scientists have assumed that mammals and their relatives that survived challenging times (like those during mass extinctions) made it because they were generalists that were able to eat just about anything and adapt to whatever life threw at them. A new study into the mammal family tree through multiple mass extinctions revealed that the species that survived aren't as generic as scientists had thought: instead, having new and different traits can be the key to succeeding in the aftermath of a catastrophe.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published A turtle time capsule: DNA found in ancient shell



Paleontologists discover possible DNA remains in fossil turtle that lived 6 million years ago in Panama, where continents collide.
Published Powering the quantum revolution: Quantum engines on the horizon



Scientists unveil exciting possibilities for the development of highly efficient quantum devices.
Published Dinosaur feathers reveal traces of ancient proteins



Palaeontologists have discovered X-ray evidence of proteins in fossil feathers that sheds new light on feather evolution.
Published Shh! Quiet cables set to help reveal rare physics events


Newly developed ultra-low radiation cables reduce background noise for neutrino and dark matter detectors.
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs



A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.
Published Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter


Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published Valleytronics: Innovative way to store and process information up to room temperature


Researchers have found a way to maintain valley polarization at room temperature using novel materials and techniques.
Published Machine learning contributes to better quantum error correction


Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.