Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Early Mammals and Birds, Physics: Quantum Computing
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published Tiny new species of great ape lived in Germany 11 million years ago



Ancient apes in Germany co-existed by partitioning resources in their environment, according to a new study.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Novel diamond quantum magnetometer for ambient condition magnetoencephalography



A highly sensitive diamond quantum magnetometer utilizing nitrogen-vacancy centers can achieve millimeter-scale resolution magnetoencephalography (MEG). The novel magnetometer, based on continuous-wave optically detected magnetic resonance, marks a significant step towards realizing ambient condition MEG and other practical applications.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Bringing back an ancient bird



Using ancient DNA extracted from the toe bone of a museum specimen, biologists have sequenced the genome of an extinct, flightless bird called the little bush moa, shedding light into an unknown corner of avian genetic history. The work is the first complete genetic map of the turkey-sized bird whose distant living cousins include the ostrich, emu, and kiwi.
Published Florida fossil porcupine solves a prickly dilemma 10-million years in the making



An exceptionally rare fossilized porcupine skeleton discovered in Florida has allowed researchers to trace the evolutionary history for one of North America's rarest mammals.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Strings that can vibrate forever (kind of)



Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published Researchers discover hidden step in dinosaur feather evolution



Scientists discover 'zoned development' in dinosaur skin, with zones of reptile-style scales and zones of bird-like skin with feathers. A new dinosaur skin fossil has been found to be composed of silica -- the same as glass.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Diverse headgear in hoofed mammals evolved from common ancestor



From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published First 'warm-blooded' dinosaurs may have emerged 180 million years ago



The ability to regulate body temperature, a trait all mammals and birds have today, may have evolved among some dinosaurs early in the Jurassic period about 180 million years ago. The new study looked at the spread of dinosaurs across different climates on Earth throughout the Mesozoic Era (the dinosaur era lasting from 230 to 66 million years ago), drawing on 1,000 fossils, climate models and the geography of the period, and dinosaurs' evolutionary trees.