Showing 20 articles starting at article 1121

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Physics: Quantum Computing

Return to the site home page

Chemistry: General Engineering: Robotics Research Environmental: Water Geoscience: Geochemistry
Published

Electronic skin as flexible as crocodile skin      (via sciencedaily.com) 

A research team has developed a crocodile-skin-inspired omnidirectionally stretchable pressure sensor.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand      (via sciencedaily.com) 

A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: Water Geoscience: Geochemistry
Published

New approach to harvesting aerial humidity with organic crystals      (via sciencedaily.com) 

Researchers have reported a novel method of harvesting water from naturally occurring sources such as fog and dew.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Filming proteins in motion      (via sciencedaily.com) 

Proteins are the heavy-lifters of biochemistry. These beefy molecules act as building blocks, receptors, processors, couriers and catalysts. Naturally, scientists have devoted a lot of research to understanding and manipulating proteins.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Engineering: Robotics Research Physics: Optics
Published

Researchers control the degree of twist in nanostructured particles      (via sciencedaily.com) 

Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Space Physics: General Space: Astrophysics Space: Cosmology Space: General
Published

Spatial patterns in distribution of galaxies      (via sciencedaily.com) 

In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microneedle-based drug delivery technique for plants      (via sciencedaily.com) 

The agriculture industry is under pressure to adopt sustainable and precise agricultural practices that enable more efficient use of resources due to worsening environmental conditions resulting from climate change, an ever-expanding human population, limited resources, and a shortage of arable land. As a result, developing delivery systems that efficiently distribute micronutrients, pesticides, and antibiotics in crops is crucial to ensuring high productivity and high-quality produce while minimising resource waste. However, current and standard practices for agrochemical application in plants are inefficient. These practices cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure and food contamination.

Chemistry: General Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Switching to hydrogen fuel could prolong the methane problem      (via sciencedaily.com) 

Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Thermal conductivity of metal organic frameworks      (via sciencedaily.com) 

Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.

Chemistry: Inorganic Chemistry Energy: Technology Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment unlocks bizarre properties of strange metals      (via sciencedaily.com) 

Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Earth Science Geoscience: Geochemistry
Published

Scientists identify substance that may have sparked life on Earth      (via sciencedaily.com) 

A team of scientists dedicated to pinpointing the primordial origins of metabolism -- a set of core chemical reactions that first powered life on Earth -- has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.

Biology: Marine Chemistry: General Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Assessing the potential risks of ocean-based climate intervention technologies on deep-sea ecosystems      (via sciencedaily.com) 

An international team of experts convened remotely as part of the Deep Ocean Stewardship Initiative's Climate Working Group to consider the deep-sea impacts of ocean-based climate intervention (OBCI). A research team has analyzed the proposed approaches to assess their potential impacts on deep-sea ecosystems and biodiversity. Their findings raise substantial concern on the potential impacts of these technologies on deep-sea ecosystems and call for the need for an integrated research effort to carefully assess the cost and benefits of each intervention.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Researchers find access to new fluorescent materials      (via sciencedaily.com) 

Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures      (via sciencedaily.com) 

Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Deconstructing tough, woody lignin      (via sciencedaily.com) 

It's a tough job, but someone's got to do it. In this case, the 'job' is the breakdown of lignin, the structural biopolymer that gives stems, bark and branches their signature woodiness. One of the most abundant terrestrial polymers on Earth, lignin surrounds valuable plant fibers and other molecules that could be converted into biofuels and other commodity chemicals -- if we could only get past that rigid plant cell wall.

Biology: Biotechnology Biology: Microbiology Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New biosensor reveals activity of elusive metal that's essential for life      (via sciencedaily.com) 

A new biosensor offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.