Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Long live the graphene valley state      (via sciencedaily.com)     Original source 

Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.

Biology: Botany Chemistry: General Ecology: Endangered Species Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Artificial 'power plants' harness energy from wind and rain      (via sciencedaily.com)     Original source 

Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists identify overlooked uncertainty in real-world experiments      (via sciencedaily.com)     Original source 

The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.

Chemistry: Biochemistry Computer Science: Quantum Computers Energy: Nuclear Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Solid-state qubits: Forget about being clean, embrace mess      (via sciencedaily.com)     Original source 

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.

Geoscience: Severe Weather Offbeat: Earth and Climate Offbeat: General
Published

Pain-based weather forecasts could influence actions      (via sciencedaily.com)     Original source 

For individuals who experience chronic pain, weather can be a significant factor in their day-to-day plans. In a recent study, about 70 percent of respondents said they would alter their behavior based on weather-based pain forecasts.

Biology: Zoology Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Are bugs bugging humans or the other way around? Study reveals a few surprises      (via sciencedaily.com)     Original source 

Research has determined key factors that impact biodiversity among spiders and insects in urban areas. The response of specific groups varied significantly, surprising the researchers. The study findings can help urban planners, landscapers, builders and homeowners make choices that increase biodiversity. Dozens of species previously unknown to science came to light through the study.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First direct imaging of small noble gas clusters at room temperature      (via sciencedaily.com)     Original source 

Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.

Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Observing macroscopic quantum effects in the dark      (via sciencedaily.com)     Original source 

Be fast, avoid light, and roll through a curvy ramp: This is the recipe for a pioneering experiment proposed by theoretical physicists. An object evolving in a potential created through electrostatic or magnetic forces is expected to rapidly and reliably generate a macroscopic quantum superposition state.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Archaeology: General Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology
Published

Researchers rely on Earth's magnetic field to verify an event mentioned in the Old Testament      (via sciencedaily.com)     Original source 

A new study scientifically corroborates an event described in the Second Book of Kings -- the conquest of the Philistine city of Gath by Hazael King of Aram. The method is based on measuring the magnetic field recorded in burnt bricks. The researchers say that the findings are important for determining the intensity of the fire and the scope of destruction in Gath, and also for understanding construction practices in the region.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Functional semiconductor made from graphene      (via sciencedaily.com)     Original source 

Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.