Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Biology: Zoology Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Roosters might recognize themselves in the mirror      (via sciencedaily.com)     Original source 

Scrape, cluck, lay eggs -- that's it? Anyone involved in chicken farming knows that the animals are capable of much more. Researchers have found evidence that roosters could recognize themselves in a mirror. Whether this is successful, however, depends on the experimental conditions -- a finding that points beyond the experiment with roosters and could also be of importance for other animal species.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Biology: General Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: General Ecology: Nature Ecology: Research Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Climate
Published

Raining cats and dogs: Global precipitation patterns a driver for animal diversity      (via sciencedaily.com)     Original source 

A team has identified several factors to help answer a fundamental ecological question: why is there a ridiculous abundance of species some places on earth and a scarcity in others? What factors, exactly, drive animal diversity? They discovered that what an animal eats (and how that interacts with climate) shapes Earth's diversity.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: General Environmental: Water Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Plants transformed into detectors of dangerous chemicals      (via sciencedaily.com)     Original source 

What if your house plant could tell you your water isn't safe? Scientists are closer to realizing this vision, having successfully engineered a plant to turn beet red in the presence of a banned, toxic pesticide. 

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A miniature magnetic resonance imager made of diamond      (via sciencedaily.com)     Original source 

The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists create new form of antenna for radio waves      (via sciencedaily.com)     Original source 

Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Simulations of 'backwards time travel' can improve scientific experiments      (via sciencedaily.com)     Original source 

Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.

Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Marine Ecology: Sea Life Geoscience: Geography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Evolutionary secrets of 'Old Tom' and the killer whales of Eden revealed by genetic study      (via sciencedaily.com)     Original source 

Evolutionary biologists have for the first time decoded the genetic lineage of a famous killer whale and a pod that once worked alongside whale hunters off the coast of Australia. In the Australian tradition of claiming New Zealand's celebrities as its own, Old Tom, the leader of a pod of killer whales that famously helped whalers hunt baleen whales in the 20th century, has ancestral links to modern-day killer whales in New Zealand, according to new DNA research. Old Tom also shared a common ancestor with killer whales from Australasia, the North Pacific, and North Atlantic Oceans, but is most similar to modern New Zealand killer whales. However, most of Tom's DNA code is not found in other killer whales globally suggesting that the killer whales of Eden may have become extinct locally.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Ecology: Extinction Ecology: General Ecology: Research Environmental: Ecosystems Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Study on mysterious Amazon porcupine can help its protection      (via sciencedaily.com)     Original source 

A recent study sheds new light on the elusive Roosmalens' dwarf porcupine, a poorly understood neotropical species. After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats, not only revealing its endemic presence in the Madeira biogeographical province but also expanding its known range in the southern Amazon.