Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Earth and Climate, Physics: Quantum Computing
Published Navigating underground with cosmic-ray muons



Superfast, subatomic-sized particles called muons have been used to wirelessly navigate underground in a reportedly world first. By using muon-detecting ground stations synchronized with an underground muon-detecting receiver, researchers were able to calculate the receiver's position in the basement of a six-story building. As GPS cannot penetrate rock or water, this new technology could be used in future search and rescue efforts, to monitor undersea volcanoes, and guide autonomous vehicles underground and underwater.
Published We've pumped so much groundwater that we've nudged Earth's spin



By pumping water out of the ground and moving it elsewhere, humans have shifted such a large mass of water that the Earth tilted nearly 80 centimeters (31.5 inches) east between 1993 and 2010 alone, according to a new study.
Published Metaverse could put a dent in global warming



For many technology enthusiasts, the metaverse has the potential to transform almost every facet of human life, from work to education to entertainment. Now, new research shows it could have environmental benefits, too.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published Earth was created much faster than we thought: This makes the chance of finding other habitable planets in the Universe more likely



Over the past decades, researchers thought Earth was created over a period of more than 100 million years. However, a new study from suggests that the creation of Earth was much more rapid, and that water and other essential ingredients for life were delivered to Earth very early on.
Published The life below our feet: Team discovers microbes thriving in groundwater and producing oxygen in the dark



A survey of groundwater samples drawn from aquifers beneath more than 80,000 square miles of Canadian prairie reveals ancient groundwaters harbor not only diverse and active microbial communities, but also unexpectedly large numbers of microbial cells. Strikingly, some of these microbes seem to produce 'dark oxygen' (in the absence of sunlight) in such abundance that the oxygen may nourish not only those microbes, but may leak into the environment and support other oxygen-reliant microbes that can't produce it themselves.
Published Plate tectonics not required for the emergence of life



New finding contradicts previous assumptions about the role of mobile plate tectonics in the development of life on Earth. Moreover, the data suggests that 'when we're looking for exoplanets that harbor life, the planets do not necessarily need to have plate tectonics,' says the lead author of a new paper.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Schrödinger's cat makes better qubits



Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Octopuses rewire their brains to adapt to seasonal temperature shifts



Octopuses don't thermoregulate, so their powerful brains are exposed to -- and potentially threatened by -- changes in temperature. Researchers report that two-spot octopuses adapt to seasonal temperature shifts by producing different neural proteins under warm versus cool conditions. The octopuses achieve this by editing their RNA, the messenger molecule between DNA and proteins. This rewiring likely protects their brains, and the researchers suspect that this unusual strategy is used widely amongst octopuses and squid.
Published Water molecules define the materials around us



A new paper argues that materials like wood, bacteria, and fungi belong to a newly identified class of matter, 'hydration solids.' The new findings emerged from ongoing research into the strange behavior of spores, dormant bacterial cells.
Published When pigeons dream



Dreams have been considered a hallmark of human sleep for a long time. Latest findings, however, suggest that when pigeons sleep, they might experience visions of flight. Researchers studied brain activation patterns in sleeping pigeons, using functional magnetic resonance imaging. The study revealed that similar to mammals, most of the brain is highly active during REM sleep. However, this wake-like state might come at a cost of reduced waste removal from the brain.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence



A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published Researchers demonstrate secure information transfer using spatial correlations in quantum entangled beams of light



Researchers have demonstrated the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published Understanding the tantalizing benefits of tantalum for improved quantum processors



Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.
Published Desert ant increase the visibility of their nest entrances in the absence of landmarks



Researchers report that in the absence of visible landmarks, desert ants increase the likelihood that foraging nest mates will find their way home quickly and safely by elevating their nest entrance. Ant colonies whose nests are found deep in the Tunisian saltpan are particularly reliant on the self-made landmarks. If the mound at the nest entrance was removed, they immediately began building a new hill, unless the researchers provided artificial landmarks. This phenomenon adds yet another fascinating facet to the amazing navigation skills of these tiny desert animals.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.