Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Earth and Climate, Physics: Quantum Computing
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers


Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.
Published 'Talking' concrete could help prevent traffic jams and cut carbon emissions


An increasing number of U.S. interstates are set to try out an invention that could save millions of taxpayer dollars and significantly reduce traffic delays. The invention, a sensor that allows concrete to 'talk,' decreases construction time and how often concrete pavement needs repairs while also improving the road’s sustainability and cutting its carbon footprint. Embedded directly into a concrete pour, the sensor sends engineers more precise and consistent data about the concrete’s strength and need for repair than is possible with currently used tools and methods.
Published Breakthrough in the understanding of quantum turbulence


Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Neolithic ceramics reveal dairy processing from milk of multiple species


A new study has found evidence of cheesemaking, using milk from multiple animals in Late Neolithic Poland.
Published Humans are leaving behind a 'frozen signature' of microbes on Mount Everest


Thanks to technological advances in microbial DNA analysis, researchers have discovered that mountaineers' boots aren't the only things leaving footprints on the world's tallest mountain. When someone sneezes on Everest, their germs can last for centuries.
Published Magnetism fosters unusual electronic order in quantum material


Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Remarkable squirting mussels captured on film


Researchers have observed a highly unusual behavior in the endangered freshwater mussel, Unio crassus. The jets disturb the river surface and attract fish. Mussel larvae in the jets can then attach to the gills of the fish and complete their metamorphosis into adults.
Published Island-inhabiting giants, dwarfs more vulnerable to extinction


Island-dwelling mammal species often expand or contract in size, becoming giant or dwarf versions of their mainland counterparts. A new Science study from a global team shows that those giants and dwarfs have faced extreme risk of extinction -- an existential threat exacerbated by the arrival of humans.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers unveil smart contact lens, capable of implementing AR-based navigation


A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published What 'Chornobyl dogs' can tell us about survival in contaminated environments


In the first step toward understanding how dogs -- and perhaps humans -- might adapt to intense environmental pressures such as exposure to radiation, heavy metals, or toxic chemicals, researchers found that two groups of dogs living within the Chernobyl Exclusion Zone showed significant genetic differences between them. The results indicate that these are two distinct populations that rarely interbreed. While earlier studies focused on the effects of the Chernobyl Nuclear Power Plant disaster on various species of wildlife, this is the first investigation into the genetic structure of stray dogs living near the Chernobyl nuclear power plant.
Published A pool at Yellowstone is a thumping thermometer


Doublet Pool's regular thumping is more than just an interesting tourist attraction. A new study shows that the interval between episodes of thumping reflects the amount of energy heating the pool at the bottom, as well as in indication of how much heat is being lost through the surface. Doublet Pool, the authors found, is Yellowstone's thumping thermometer.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published Can artificial intelligence help find life on Mars or icy worlds?


Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.