Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Physics: Optics, Space: General

Return to the site home page

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

High-speed electron camera uncovers a new 'light-twisting' behavior in an ultrathin material      (via sciencedaily.com)     Original source 

Using an instrument for ultrafast electron diffraction (MeV-UED), researchers discovered how an ultrathin material can circularly polarize light. This discovery sets up a promising approach to manipulate light for applications in optoelectronic devices.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Mars likely had cold and icy past, new study finds      (via sciencedaily.com)     Original source 

The question of whether Mars ever supported life has captivated the imagination of scientists and the public for decades. Central to the discovery is gaining insight into the past climate of Earth's neighbor: was the planet warm and wet, with seas and rivers much like those found on our own planet? Or was it frigid and icy, and therefore potentially less prone to supporting life as we know it? A new study finds evidence to support the latter by identifying similarities between soils found on Mars and those of Canada's Newfoundland, a cold subarctic climate.

Space: Exploration Space: General
Published

Greater focus needed on how existing international law can prevent the increasing militarization of outer space      (via sciencedaily.com)     Original source 

There is a pressing need for countries and international organizations to understand better how existing international law can help them address serious concerns about the militarization of outer space, a new study says.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

The origins of dark comets      (via sciencedaily.com)     Original source 

Up to 60% of near-Earth objects could be dark comets, mysterious asteroids that orbit the sun in our solar system that likely contain or previously contained ice and could have been one route for delivering water to Earth, according to a new study.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Strong evidence for intermediate-mass black hole in Omega Centauri      (via sciencedaily.com)     Original source 

Most known black holes are either extremely massive, like the supermassive black holes that lie at the cores of large galaxies, or relatively lightweight, with a mass of under 100 times that of the Sun. Intermediate-mass black holes (IMBHs) are scarce, however, and are considered rare 'missing links' in black hole evolution.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Found with Webb: A potentially habitable icy world      (via sciencedaily.com)     Original source 

A international team of astronomers has made an exciting discovery about the temperate exoplanet LHS 1140 b: it could be a promising 'super-Earth' covered in ice or water.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Chemistry: Biochemistry Energy: Technology Physics: Optics
Published

Implantable LED device uses light to treat deep-seated cancers      (via sciencedaily.com)     Original source 

Certain types of light have proven to be an effective, minimally invasive treatment for cancers located on or near the skin when combined with a light-activated drug. But deep-seated cancers have been beyond the reach of light's therapeutic effects. To change this, engineers and scientists have devised a wireless LED device that can be implanted. This device, when combined with a light-sensitive dye, not only destroys cancer cells, but also mobilizes the immune system's cancer-targeting response.

Environmental: Water Geoscience: Earth Science Geoscience: Geology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Building materials for water-rich planets in the early solar system      (via sciencedaily.com)     Original source 

Age data for certain classes of meteorite have made it possible to gain new findings on the origin of small water-rich astronomical bodies in the early solar system. These planetesimals continually supplied building materials for planets -- also for the Earth, whose original material contained little water. The Earth received its actual water through planetesimals, which emerged at low temperatures in the outer solar system, as shown by computational models carried out by an international research teach with participation by earth scientists.

Biology: Microbiology Offbeat: General Offbeat: Plants and Animals Offbeat: Space Space: Exploration Space: General
Published

New way for beneficial microbes to survive extreme conditions and space exploration      (via sciencedaily.com)     Original source 

Investigators sought to help figure out how to send materials like probiotics into space and to better treat a variety of gastrointestinal (GI) and metabolic diseases. The team's formulations allow microbial therapeutics, including those used to treat gastrointestinal diseases and improve crop production, to maintain their potency and function over time despite extreme temperatures.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Stench of a gas giant? Nearby exoplanet reeks of rotten eggs, and that's a good thing      (via sciencedaily.com)     Original source 

An exoplanet infamous for its deadly weather has been hiding another bizarre feature -- it reeks of rotten eggs, according to a new study of data from the James Webb Space Telescope.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Fresh wind blows from historical supernova      (via sciencedaily.com)     Original source 

A mysterious remnant from a rare type of supernova recorded in 1181 has been explained for the first time. Two white dwarf stars collided, creating a temporary 'guest star,' now labeled supernova (SN) 1181, which was recorded in historical documents in Japan and elsewhere in Asia. However, after the star dimmed, its location and structure remained a mystery until a team pinpointed its location in 2021. Now, through computer modeling and observational analysis, researchers have recreated the structure of the remnant white dwarf, a rare occurrence, explaining its double shock formation. They also discovered that high-speed stellar winds may have started blowing from its surface within just the past 20-30 years. This finding improves our understanding of the diversity of supernova explosions, and highlights the benefits of interdisciplinary research, combining history with modern astronomy to enable new discoveries about our galaxy.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Single atoms show their true color      (via sciencedaily.com)     Original source 

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Moon 'swirls' could be magnetized by unseen magmas      (via sciencedaily.com)     Original source 

Mysterious, light-colored swirls on Moon's surface could be rocks magnetized by magma activity underground, laboratory experiments confirm.

Computer Science: General Mathematics: Modeling Physics: General Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Machine learning could aid efforts to answer long-standing astrophysical questions      (via sciencedaily.com)     Original source 

Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Physics: Optics
Published

Precise and less expensive 3D printing of complex, high-resolution structures      (via sciencedaily.com)     Original source 

Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications, from consumer electronics to the biomedical field.

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Energy: Alternative Fuels Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Giant clams may hold the answers to making solar energy more efficient      (via sciencedaily.com)     Original source 

Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.