Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Optics
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Nanosized blocks spontaneously assemble in water to create tiny floating checkerboards



Researchers have engineered nanosized cubes that spontaneously form a two-dimensional checkerboard pattern when dropped on the surface of water. The work presents a simple approach to create complex nanostructures through a technique called self-assembly.
Published Researchers leverage inkjet printing to make a portable multispectral 3D camera



Researchers have used inkjet printing to create a compact multispectral version of a light field camera. The camera, which fits in the palm of the hand, could be useful for many applications including autonomous driving, classification of recycled materials and remote sensing.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Scientists adapt astronomy method to unblur microscopy images



Researchers have adapted a class of techniques employed in astronomy to unblur images of far-away galaxies for use in the life sciences, providing biologists with a faster and cheaper way to get clearer and sharper microscopy images.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.
Published Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice



A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.
Published Looking for a new battery platform? Focus on the essentials



In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published New computer vision method helps speed up screening of electronic materials



A new computer vision technique developed by engineers significantly speeds up the characterization of newly synthesized electronic materials. Such materials might be used in novel solar cells, transistors, LEDs, and batteries.
Published Researchers engineer new approach for controlling thermal emission



If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers has published a novel method for controlling this thermal emission in Science.
Published Researchers demonstrate the first chip-based 3D printer



Researchers have demonstrated the first chip-based 3D printer, a tiny device that emits reconfigurable beams of visible light into a well of resin that rapidly cures into a solid shape. The advance could enable a 3D printer small enough to fit in the palm of a person's hand.
Published Miniaturizing a laser on a photonic chip



Scientists have successfully miniaturized a powerful erbium-based biber laser on a silicon-nitride photonic chip. Since typical erbium-based fiber lasers are large and difficult to scale down, the breakthrough promises major advances in optical communications and sensing technologies.
Published 'Quantum optical antennas' provide more powerful measurements on the atomic level



A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published With programmable pixels, novel sensor improves imaging of neural activity



New camera chip design allows for optimizing each pixel's timing to maximize signal to noise ratio when tracking real-time visual indicator of neural voltage.