Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Physics: Optics
Published Ethylene from CO2: Building-kit catalyst



Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.
Published By listening, scientists learn how a protein folds



By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
Published Blueprints of self-assembly



Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.
Published Innovative 3D printing could revolutionize treatment for cataracts and other eye conditions



Rsearchers have developed the first 3D printable ocular resins, marking a significant breakthrough in manufacturing specialist lenses for implantation in the human eye.
Published Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues



Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.
Published Ion irradiation offers promise for 2D material probing



Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Chemists develop new method for making gamma chiral centers on simple carboxylic acids



C-H activation-based method should speed drug molecule design and diversification.
Published Breaking bonds to form bonds: Rethinking the Chemistry of Cations



A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.
Published Bioengineered enzyme creates natural vanillin from plants in one step



Vanilla, the most widely used flavoring compound in confectionaries and cosmetics, gets its sweet flavor and aroma from the chemical compound -- 'vanillin'. However, the large-scale production of natural vanillin is impeded by the lack of microbial processes and enzymes which can commercially generate vanillin. Now, researchers have genetically engineered a novel enzyme which can convert ferulic acid from plant waste into vanillin in a one-step sustainable process.
Published A novel multifunctional catalyst turns methane into valuable hydrocarbons



The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.
Published Studying bubbles can lead to more efficient biofuel motors



By studying how bubbles form in a drop of biodiesel, researchers can help future engines get the most energy out of the fuel.
Published Researchers use artificial intelligence to boost image quality of metalens camera



Researchers have leveraged deep learning techniques to enhance the image quality of a metalens camera. The new approach uses artificial intelligence to turn low-quality images into high-quality ones, which could make these cameras viable for a multitude of imaging tasks including intricate microscopy applications and mobile devices.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Next-generation sustainable electronics are doped with air



Semiconductors are the foundation of all modern electronics. Now, researchers have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future cheap and sustainable organic semiconductors.
Published Bio-based resins could offer recyclable future for 3D printing



A new type of recyclable resin, made from biosourced materials, has been designed for use in 3D printing applications.
Published Promising new development in solar cell technology



Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.