Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Thermodynamics, Physics: Optics

Return to the site home page

Chemistry: Biochemistry Energy: Technology Physics: Optics
Published

Gentle defibrillation for the heart      (via sciencedaily.com)     Original source 

Using light pulses as a model for electrical defibrillation, scientists developed a method to assess and modulate the heart function. The research team has thus paved the way for an efficient and direct treatment for cardiac arrhythmias. This may be an alternative for the strong and painful electrical shocks currently used.

Physics: Optics
Published

Unlocking spin current secrets: A new milestone in spintronics      (via sciencedaily.com)     Original source 

Using neutron scattering and voltage measurements, a group of researchers have discovered that a material's magnetic properties can predict spin current changes with temperature. The finding is a major breakthrough in the field of spintronics.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perfecting the view on a crystal's imperfection      (via sciencedaily.com)     Original source 

Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Switching off the light to see better      (via sciencedaily.com)     Original source 

Researchers used structured light and switchable fluorescent molecules to reduce the background light from the out-of-plane regions of microscope samples. This method allowed for the acquisition of images that surpassed the conventional resolution limit, and it may be useful for further study of cell clusters and other biological systems.

Computer Science: General Physics: Optics
Published

2D materials rotate light polarization      (via sciencedaily.com)     Original source 

Physicists have shown that ultra-thin two-dimensional materials such as tungsten diselenide can rotate the polarization of visible light by several degrees at certain wavelengths under small magnetic fields suitable for use on chips.

Physics: General Physics: Optics
Published

Superradiant atoms could push the boundaries of how precisely time can be measured      (via sciencedaily.com)     Original source 

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers present a new method for measuring the time interval, the second, mitigating some of the limitations that today's most advanced atomic clocks encounter. The result could have broad implications in areas such as space travel, volcanic eruptions and GPS systems.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing
Published

Energy scientists unravel the mystery of gold's glow      (via sciencedaily.com)     Original source 

EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.

Chemistry: Thermodynamics Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Atom-by-atom: Imaging structural transformations in 2D materials      (via sciencedaily.com)     Original source 

Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.

Biology: Cell Biology Biology: General Biology: Microbiology Physics: Optics
Published

A better view with new mid-infrared nanoscopy      (via sciencedaily.com)     Original source 

A team has constructed an improved mid-infrared microscope, enabling them to see the structures inside living bacteria at the nanometer scale. Mid-infrared microscopy is typically limited by its low resolution, especially when compared to other microscopy techniques. This latest development produced images at 120 nanometers, which the researchers say is a thirtyfold improvement on the resolution of typical mid-infrared microscopes. Being able to view samples more clearly at this smaller scale can aid multiple fields of research, including into infectious diseases, and opens the way for developing even more accurate mid-infrared-based imaging in the future.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Cooler transformers could help electric grid      (via sciencedaily.com)     Original source 

Simulations on the Stampede2 supercomputer of the Texas Advanced Computing Center (TACC) are helping scientists engineer solutions to overheating of grid transformers -- a critical component of the electric grid.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Researchers advance pigment chemistry with moon-inspired reddish magentas      (via sciencedaily.com)     Original source 

A researcher who made color history in 2009 with a vivid blue pigment has developed durable, reddish magentas inspired by lunar mineralogy and ancient Egyptian chemistry.

Physics: General Physics: Optics
Published

Photonic computation with sound waves      (via sciencedaily.com)     Original source 

Optical neural networks may provide the high-speed and large-capacity solution necessary to tackle challenging computing tasks. However, tapping their full potential will require further advances. One challenge is the reconfigurability of optical neural networks. A research team has now succeeded in laying the foundation for new reconfigurable neuromorphic building blocks by adding a new dimension to photonic machine learning: sound waves. The researchers use light to create temporary acoustic waves in an optical fiber. The sound waves generated in this way can for instance enable a recurrent functionality in a telecom optical fiber, which is essential to interpreting contextual information such as language.

Engineering: Graphene Engineering: Nanotechnology Physics: Optics
Published

Quantum electronics: Charge travels like light in bilayer graphene      (via sciencedaily.com)     Original source 

An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Crucial connection for 'quantum internet' made for the first time      (via sciencedaily.com)     Original source 

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.

Chemistry: Inorganic Chemistry Physics: Optics
Published

New colorful plastic films for versatile sensors and electronic displays      (via sciencedaily.com)     Original source 

Researchers have synthesized triarylborane (TAB) compounds that exhibit unusual optical responses upon binding to certain anions. They also synthesized thin polymer films that incorporate the TAB and retain the sensing as well as the light emission properties of the TAB. This work is an important advance in plastic research and has applications in analyte sensing as well as electronic display technologies.

Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Earthquakes
Published

Rock permeability, microquakes link may be a boon for geothermal energy      (via sciencedaily.com)     Original source 

Using machine learning, researchers have tied low-magnitude microearthquakes to the permeability of subsurface rocks beneath the Earth, a discovery that could have implications for improving geothermal energy transfer.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum breakthrough when light makes materials magnetic      (via sciencedaily.com)     Original source 

The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.

Physics: Optics
Published

Breakthrough for next-generation digital displays      (via sciencedaily.com)     Original source 

Researchers have developed a digital display screen where the LEDs themselves react to touch, light, fingerprints and the user's pulse, among other things. Their results could be the start of a whole new generation of displays for phones, computers and tablets.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Geochemistry
Published

New device gathers, stores electricity in remote settings      (via sciencedaily.com)     Original source 

Wirelessly connected devices perform an expanding array of applications, such as monitoring the condition of machinery and remote sensing in agricultural settings. These applications hold much potential for improving the efficiency, but how do you power these devices where reliable electrical sources are not available? Research points to a possible solution in the form of a novel type of battery.