Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Physics: Optics, Physics: Quantum Physics
Published Spontaneous curvature the key to shape-shifting nanomaterials



Inspired by nature, nanotechnology researchers have identified 'spontaneous curvature' as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.
Published Opening a window on the brain



Researchers have introduced a new method for in vivo brain imaging, enabling large-scale and long-term observation of neuronal structures and activities in awake mice. This method is called the 'nanosheet incorporated into light-curable resin' (NIRE) method, and it uses fluoropolymer nanosheets covered with light-curable resin to create larger cranial windows.
Published A key to the future of robots could be hiding in liquid crystals



Robots and cameras of the future could be made of liquid crystals, thanks to a new discovery that significantly expands the potential of the chemicals already common in computer displays and digital watches. The findings are a simple and inexpensive way to manipulate the molecular properties of liquid crystals with light exposure.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published Researchers use liquid crystals to control polarization inside laser-written waveguides



Researchers have developed a new way to control and manipulate optical signals by embedding a liquid crystal layer into waveguides created with direct laser writing. The new devices enable electro-optical control of polarization, which could open new possibilities for chip-based devices and complex photonic circuits based on femtosecond-written waveguides.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals



Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.
Published Scientists reveal how light behaves in formless solids



For a long time, it was thought that amorphous solids do not selectively absorb light because of their disordered atomic structure. A new study disproves this theory and shows that amorphous solids actually exhibit dichroism, meaning that they selectively absorb light of different polarizations.
Published A bright idea for recycling rare-earth phosphors from used fluorescent bulbs



Recycling facilities collect glass and mercury from thrown away fluorescent bulbs, but discarded lighting could also supply rare-earth metals for reuse. The 17 metals referred to as rare earths aren't all widely available and aren't easily extracted with existing recycling methods. Now, researchers have found a simpler way to collect slightly magnetic particles that contain rare-earth metals from spent fluorescent bulbs.
Published Under pressure: New tool for precise measurement of superconductors



Researchers think they have a foundational tool for the thorny problem of how to measure and image the behavior of hydride superconductors at high pressure. They report creatively integrating quantum sensors into a diamond anvil cell, enabling direct readouts of the pressurized material's electrical and magnetic properties.
Published Researchers develop novel method to photosynthesize hydrogen peroxide using water and air



Researchers have developed a microporous covalent organic framework with dense donor-acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide through the photosynthesis process with water and air.
Published Light stimulates a new twist for synthetic chemistry



Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.
Published Quantum films on plastic



Researchers have discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips. Bismuth combines several advantageous properties not found in other systems to date, as the team reports. Particularly: the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.
Published New disease testing component facilitates lower-cost diagnostics



Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.
Published Diamonds are a chip's best friend



New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.
Published Trapping and excitation of the simplest molecule



The simplest possible molecule H2+ was one of the very first molecules to form in the cosmos. This makes it significant for astrophysics, but also an important object of research for fundamental physics. It is difficult to study in experiments. However, a team of physicists has now succeeded in measuring the vibrations of the molecule with a laser.
Published Visual prosthesis simulator offers a glimpse into the future



Researchers have developed a simulator that enables artificial visual observations for research into the visual prosthesis. This open source tool is available to researchers and offers those who are interested insight into the future application.
Published Movies of ultrafast electronic circuitry in space and time



Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.