Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Physics: Optics, Physics: Quantum Computing

Return to the site home page

Physics: General Physics: Optics
Published

Bartering light for light: Scientists discover new system to control the chaotic behavior of light      (via sciencedaily.com)     Original source 

Researchers describe a new platform for controlling the chaotic behavior of light by tailoring its scattering patterns using light itself.

Chemistry: Thermodynamics Energy: Alternative Fuels Offbeat: General Physics: Optics
Published

In a surprising finding, light can make water evaporate without heat      (via sciencedaily.com)     Original source 

At the interface of water and air, light can, in certain conditions, bring about evaporation without the need for heat, according to a new study.

Chemistry: Biochemistry Chemistry: Thermodynamics Computer Science: General Engineering: Nanotechnology Physics: Optics
Published

New twist on optical tweezers      (via sciencedaily.com)     Original source 

Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy. 

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: Optics
Published

Photography: One-stop solution for shaping and outlining objects      (via sciencedaily.com)     Original source 

A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

New frequency comb can identify molecules in 20-nanosecond snapshots      (via sciencedaily.com)     Original source 

Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.

Offbeat: General Offbeat: Space Physics: Optics Space: Astronomy Space: Exploration Space: General
Published

To advance space colonization, new research explores 3D printing in microgravity      (via sciencedaily.com)     Original source 

Research into how 3D printing works in a weightless environment aims to support long-term exploration and habitation on spaceships, the moon or Mars.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Physics: Optics
Published

Controlling organoids with light      (via sciencedaily.com)     Original source 

Organoids help researchers understand biological processes in health and in disease. It is, however, difficult to influence the way in which they organize themselves into complex tissues. Now a group has found a new way to do so.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Physics: Optics
Published

Inspection method increases confidence in laser powder bed fusion 3D printing      (via sciencedaily.com)     Original source 

Researchers have improved flaw detection to increase confidence in metal parts that are 3D-printed using laser powder bed fusion.

Physics: Optics
Published

Community-developed guidelines for publishing images help address reproducibility problem in science      (via sciencedaily.com)     Original source 

The use of images in scientific papers is more popular than ever, but there have been no common standards for their publication -- until now.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Physics: Optics
Published

Highest-resolution single-photon superconducting camera      (via sciencedaily.com)     Original source 

Researchers have built a superconducting camera containing 400,000 pixels -- 400 times more than any other device of its type. Having more pixels could open up many new applications in science and biomedical research.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Diapers can be recycled 200 times faster with light      (via sciencedaily.com)     Original source 

More than 100,000 tons of diapers are disposed of annually in Germany. Vast amounts of valuable resources, such as diaper liners, end up in the trash. The liners consist of special polymers, so-called superabsorbers. Researchers have now succeeded in considerably improving their complex recycling process. They use UV radiation to degrade the chemical chains that keep the polymers together. No chemicals are needed. Recycling at room temperature is 200 times faster than conventional recycling. The recycled polymers can then be processed to new adhesives and dyes.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Scientists shed light on potential breakthrough biomedical molecule      (via sciencedaily.com)     Original source 

Developing a new, light-activated method to produce the molecule opens doors for future biomedical applications.