Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Physics: Optics, Space: Astronomy
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published Studies of geologic faulting on icy moons aid exploration of extraterrestrial watery worlds



Earth and space scientists document and reveal the mechanisms behind strike-slip faulting on the largest moon of Saturn, Titan, and Jupiter's largest moon, Ganymede.
Published Mystery resolved: Black hole feeding and feedback at the center of an active galaxy



Almost every large galaxy has a supermassive black hole at its center. An international research team has recently observed the Circinus galaxy, which is one of the closest galaxies to the Milky Way, with high enough resolution to gain further insights into the gas flows to and from the black hole at its galactic nucleus.
Published Decarbonizing light-duty transportation in the United States: Study reveals strategies to achieve goal



Researchers found that meeting greenhouse gas emissions goals for light-duty vehicles, which are passenger vehicles such as cars and trucks, is possible, but not just by increasing electric vehicle sales.
Published Vacuum in optical cavity can change material's magnetic state without laser excitation



Researchers in Germany and the USA have produced the first theoretical demonstration that the magnetic state of an atomically thin material, ?-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material's magnetic order from a zigzag antiferromagnet into a ferromagnet.
Published Black holes are messy eaters



New observations down to light-year scale of the gas flows around a supermassive black hole have successfully detected dense gas inflows and shown that only a small portion (about 3 percent) of the gas flowing towards the black hole is eaten by the black hole. The remainder is ejected and recycled back into the host galaxy.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Exploding stars



When massive stars or other stellar objects explode in the Earth's cosmic neighborhood, ejected debris can also reach our solar system. Traces of such events are found on Earth or the Moon and can be detected using accelerator mass spectrometry, or AMS for short.
Published 'Jurassic worlds' might be easier to spot than modern Earth



An analysis finds telescopes could better detect potential chemical signatures of life in an Earth-like exoplanet that more closely resembles the age the dinosaurs inhabited than the one we know today.
Published Bartering light for light: Scientists discover new system to control the chaotic behavior of light



Researchers describe a new platform for controlling the chaotic behavior of light by tailoring its scattering patterns using light itself.
Published In a surprising finding, light can make water evaporate without heat



At the interface of water and air, light can, in certain conditions, bring about evaporation without the need for heat, according to a new study.
Published New twist on optical tweezers



Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy.
Published Giant planets cast a deadly pall



Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates.
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published New frequency comb can identify molecules in 20-nanosecond snapshots



Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.
Published The Crab Nebula seen in new light by NASA's Webb



NASA's James Webb Space Telescope has gazed at the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus. Since the recording of this energetic event in 1054 CE by 11th-century astronomers, the Crab Nebula has continued to draw attention and additional study as scientists seek to understand the conditions, behavior, and after-effects of supernovae through thorough study of the Crab, a relatively nearby example.
Published To advance space colonization, new research explores 3D printing in microgravity



Research into how 3D printing works in a weightless environment aims to support long-term exploration and habitation on spaceships, the moon or Mars.
Published The importance of the Earth's atmosphere in creating the large storms that affect satellite communications



Large geomagnetic storms disrupt radio signals and GPS. Now, researchers have identified the previous underestimated role of the ionosphere, a region of Earth's upper atmosphere that contains a high concentration of ions and free electrons, in determining how such storms develop. Understanding the interactions that cause large geomagnetic storms is important because they can disrupt radio signals and GPS. Their findings may help predict storms with the greatest potential consequences.
Published Controlling organoids with light



Organoids help researchers understand biological processes in health and in disease. It is, however, difficult to influence the way in which they organize themselves into complex tissues. Now a group has found a new way to do so.
Published Uranus aurora discovery offers clues to habitable icy worlds



Astronomers confirm the existence of an infrared (IR) aurora on Uranus. This could help astronomers identify exoplanets that might support life, a large number of which are icy worlds.