Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Physics: Optics, Space: Astronomy
Published Astronomers detect most distant fast radio burst to date



An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory's (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun's total emission over 30 years.
Published Black holes could come in 'perfect pairs' in an ever expanding Universe



Researchers have shown it's theoretically possible for black holes to exist in perfectly balanced pairs -- held in equilibrium by a cosmological force -- mimicking a single black hole.
Published Scientists propose super-bright light sources powered by quasiparticles



Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.
Published Soft optical fibers block pain while moving and stretching with the body



New soft, implantable fibers can deliver light to major nerves through the body. They are an experimental tool for scientists to explore the causes and potential treatments for peripheral nerve disorders in animal models.
Published From square to cube: Hardware processing for AI goes 3D, boosting processing power



A breakthrough development in photonic-electronic hardware could significantly boost processing power for AI and machine learning applications. The approach uses multiple radio frequencies to encode data, enabling multiple calculations to be carried out in parallel. The method shows promise for outperforming state-of-the-art electronic processors, with further enhancements possible.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Superlensing without a super lens: Physicists boost microscopes beyond limits



Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
Published Physicists create new form of antenna for radio waves



Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.
Published Source of largest ever Mars quake revealed



Scientists have announced the results of an unprecedented collaboration to search for the source of the largest ever seismic event recorded on Mars. The study rules out a meteorite impact, suggesting instead that the quake was the result of enormous tectonic forces within Mars' crust.
Published Signatures of the Space Age: Spacecraft metals left in the wake of humanity's path to the stars



Using tools hitched to the nose cone of their research planes and sampling more than 11 miles above the planet's surface, researchers have discovered significant amounts of metals in aerosols in the atmosphere, likely from increasingly frequent launches and returns of spacecraft and satellites. That mass of metal is changing atmospheric chemistry in ways that may impact Earth's atmosphere and ozone layer.
Published Photonic crystals bend light as though it were under the influence of gravity



Scientists have theoretically predicted that light can be bent under pseudogravity. A recent study by researchers using photonic crystals has demonstrated this phenomenon. This breakthrough has significant implications for optics, materials science, and the development of 6G communications.
Published Simulations of 'backwards time travel' can improve scientific experiments



Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.
Published New study unveils stretchable high-resolution user-interactive synesthesia displays for visual--acoustic encryption



A research team has succeeded in developing a cutting-edge display using transfer-printing techniques, propelling the field of multifunctional displays into new realms of possibility.
Published Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60



Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.
Published Enlightening insects: Morpho butterfly nanostructure inspires technology for bright, balanced lighting



Researchers developed a nanostructured light diffuser that provides balanced lighting by diffracting blue and red light, and can be cleaned by simple rinsing with water. The diffuser consists of cheap materials and can be shaped with common tools. A protective glass coating maintains the diffuser's optical performance yet adds durability. This work might improve the visual performance of everyday lighting displays.
Published NASA's Webb captures an ethereal view of NGC 346



One of the greatest strengths of NASA's James Webb Space Telescope is its ability to give astronomers detailed views of areas where new stars are being born. The latest example, showcased here in a new image from Webb's Mid-Infrared Instrument (MIRI), is NGC 346 -- the brightest and largest star-forming region in the Small Magellanic Cloud.
Published Removal of magnetic spacecraft contamination within extraterrestrial samples easily carried out, researchers say



By demonstrating that spaceflight doesn’t adversely affect the magnetism of moon rocks, researchers underscore the exciting potential of studying the magnetic histories stored in these samples.
Published New easy-to-use optical chip can self-configure to perform various functions



Researchers have developed an easy-to-use optical chip that can configure itself to achieve various functions. The positive real-valued matrix computation they have achieved gives the chip the potential to be used in applications requiring optical neural networks.
Published Researchers capture first-ever afterglow of huge planetary collision in outer space



A chance social media post by an eagle-eyed amateur astronomer sparked the discovery of an explosive collision between two giant planets, which crashed into each other in a distant space system 1,800 light years away from planet Earth.
Published 'Starquakes' could explain mystery signals



Fast radio bursts, or FRBs, are an astronomical mystery, with their exact cause and origins still unconfirmed. These intense bursts of radio energy are invisible to the human eye, but show up brightly on radio telescopes. Previous studies have noted broad similarities between the energy distribution of repeat FRBs, and that of earthquakes and solar flares. However, new research has looked at the time and energy of FRBs and found distinct differences between FRBs and solar flares, but several notable similarities between FRBs and earthquakes. This supports the theory that FRBs are caused by 'starquakes' on the surface of neutron stars. This discovery could help us better understand earthquakes, the behavior of high-density matter and aspects of nuclear physics.