Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Physics: Optics, Space: Astrophysics
Published 'Old smokers' and 'squalling newborns' among hidden stars spotted for first time



'Hidden' stars including a new type of elderly giant nicknamed an 'old smoker' have been spotted for the first time by astronomers. The mystery objects exist at the heart of our Milky Way galaxy and can sit quietly for decades -- fading almost to invisibility -- before suddenly puffing out clouds of smoke, according to a new study.
Published Faint features in galaxy NGC 5728 revealed



A new study describes the best method to improve images obtained by the James Webb Science Telescope (JWST) using a mathematical approach called deconvolution.
Published Astrophysical jet caught in a 'speed trap'



The microquasar SS 433 stands out as one of the most intriguing objects within our Milky Way. A pair of oppositely directed beams of plasma ('jets') spirals away perpendicularly from the binary systems disk's surface at just over a quarter of the speed of light. The H.E.S.S. observatory in Namibia has now succeeded in detecting very high energy gamma rays from the jets of SS 433, and identifying the exact location within the jets of one of the galaxy's most effective particle accelerators.
Published Shining a light on the hidden properties of quantum materials



Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published Researchers find new multiphoton effect within quantum interference of light



An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).
Published Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech



Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published Researchers create faster and cheaper way to print tiny metal structures with light



Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).
Published Lightest black hole or heaviest neutron star? MeerKAT uncovers a mysterious object in Milky Way



An international team of astronomers have found a new and unknown object in the Milky Way that is heavier than the heaviest neutron stars known and yet simultaneously lighter than the lightest black holes known.
Published Light it up: Reimagining the optical diode effect



A research group has discovered significant nonreciprocal optical absorption of LiNiPO4, referred to as the optical diode effect, in which divalent nickel (Ni2+) ions are responsible for magnetism, by passing light at shortwave infrared wavelengths used in optical communications. Furthermore, they have uncovered that it is possible to switch the optical diode effect by applying a magnetic field. This is a step forward in the development of an innovative optical isolator that is more compact and can control light propagation, replacing the conventional optical isolators with complex structures.
Published Lighting the path: Exploring exciton binding energies in organic semiconductors



Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Origin of intense light in supermassive black holes and tidal disruption events revealed



A new study is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare.
Published Astronomers detect oldest black hole ever observed



Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is 'eating' its host galaxy to death.
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Ultrafast laser pulses could lessen data storage energy needs



A discovery from an experiment with magnetic materials and ultrafast lasers could be a boon to energy-efficient data storage.
Published Researchers optimize 3D printing of optically active nanostructures



The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
Published Glowing COVID-19 diagnostic test prototype produces results in one minute



Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.
Published Study delivers detailed photos of galaxies' inner structures



High-resolution images captured by the James Webb Space Telescope are offering powerful insights into the complex dust patterns of nearby star-forming galaxies.
Published Astronomers produce most sensitive radio image ever of ancient star cluster



Astronomers have created the most sensitive radio image ever of a globular cluster, an ancient ball of tightly-packed stars.