Showing 20 articles starting at article 661

< Previous 20 articles        Next 20 articles >

Categories: Environmental: Biodiversity, Physics: Optics

Return to the site home page

Physics: Optics
Published

Enlightening insects: Morpho butterfly nanostructure inspires technology for bright, balanced lighting      (via sciencedaily.com)     Original source 

Researchers developed a nanostructured light diffuser that provides balanced lighting by diffracting blue and red light, and can be cleaned by simple rinsing with water. The diffuser consists of cheap materials and can be shaped with common tools. A protective glass coating maintains the diffuser's optical performance yet adds durability. This work might improve the visual performance of everyday lighting displays.

Biology: Cell Biology Biology: Marine Ecology: Sea Life Environmental: Biodiversity Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Remains of artificial turf is an important source of pollution of the aquatic environment      (via sciencedaily.com)     Original source 

Every year, around 1,200 and 1,400 artificial turf sports fields are installed in the European Union. These fields are made up of synthetic fibers, mainly plastics, that mimic the appearance of natural grass. Recently, scientists conducted a study that characterizes and quantifies the presence of artificial turf fibers in samples collected from surface waters of the Catalan coast and the Guadalquivir River. The findings indicate that artificial turfs can be an important source of pollution in the aquatic environment, accounting for up to 15% of the plastics larger than 5 mm in length that are found floating in the aquatic environment. 

Computer Science: General Physics: Optics
Published

New easy-to-use optical chip can self-configure to perform various functions      (via sciencedaily.com)     Original source 

Researchers have developed an easy-to-use optical chip that can configure itself to achieve various functions. The positive real-valued matrix computation they have achieved gives the chip the potential to be used in applications requiring optical neural networks.

Biology: Biochemistry Biology: Zoology Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Wildfires Geoscience: Earth Science
Published

Epiphytes, amazing plants like moss and bromeliads found in trees, face growing threats      (via sciencedaily.com)     Original source 

Epiphytes, plants such as orchids and mosses that grow in trees, draw nutrients from the air and create refuge for all sorts of other life forms. They are the foundation of forest canopy ecosystems, but they are facing threats from human and natural disturbances.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Bringing out the color in zinc      (via sciencedaily.com)     Original source 

Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.

Chemistry: General Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Titanium oxide material can remove toxic dyes from wastewater      (via sciencedaily.com)     Original source 

Discharged in large quantities by textile, cosmetic, ink, paper and other manufacturers, dyes carry high-toxicity and can bring potential carcinogens to wastewater. It’s a major concern for wastewater treatment — but researchers may have found a solution, using a tiny nanofilament.

Physics: Acoustics and Ultrasound Physics: Optics
Published

Medical imaging fails dark skin: Researchers fixed it      (via sciencedaily.com)     Original source 

A team found a way to deliver clear pictures of anyone's internal anatomy, no matter their skin tone.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Groundbreaking study shows defects spreading through diamond faster than the speed of sound      (via sciencedaily.com)     Original source 

Settling a half century of debate, researchers have discovered that tiny linear defects can propagate through a material faster than sound waves do. These linear defects, or dislocations, are what give metals their strength and workability, but they can also make materials fail catastrophically ­– which is what happens every time you pop the pull tab on a can of soda. The fact that they can travel so fast gives scientists a new appreciation of the unusual types of damage they might do to a broad range of materials in extreme conditions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Optics
Published

Physicists find evidence for magnetically bound excitons      (via sciencedaily.com)     Original source 

Physicists have experimentally detected how so-called Hubbard excitons form in real-time. 

Computer Science: General Physics: Optics
Published

New technology could reduce lag, improve reliability of online gaming, meetings      (via sciencedaily.com)     Original source 

Whether you’re battling foes in a virtual arena or collaborating with colleagues across the globe, lag-induced disruptions can be a major hindrance to seamless communication and immersive experiences. That’s why researchers have developed new technology to make data transfer over optical fiber communication faster and more efficient.

Biology: Botany Biology: General Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Carbon-capture tree plantations threaten tropical biodiversity for little gain, ecologists say      (via sciencedaily.com)     Original source 

The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.

Physics: General Physics: Optics
Published

Lasers deflected using air      (via sciencedaily.com)     Original source 

Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.

Ecology: General Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Improved mangrove conservation could yield cash, carbon, coastal benefits      (via sciencedaily.com)     Original source 

A shift in the way we think about the benefits mangroves provide to coastal regions could yield significant economic and biodiversity gains and protect millions from flooding, research has revealed.

Physics: Optics
Published

Next-generation printing: Precise and direct, using optical vortices      (via sciencedaily.com)     Original source 

Researchers have succeeded in printing uniformly sized droplets with a diameter of approximately 100 µm using a liquid film of fluorescent ink. This ink, with a viscosity roughly 100 times that of water, was irradiated with an optical vortex, resulting in prints of exceptional positional accuracy at the micrometer scale.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Intense lasers shine new light on the electron dynamics of liquids      (via sciencedaily.com)     Original source 

The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.