Showing 20 articles starting at article 1381
< Previous 20 articles Next 20 articles >
Categories: Environmental: Water, Physics: Optics
Published Path to net-zero carbon capture and storage may lead to ocean


Engineering researchers have developed a novel way to capture carbon dioxide from the air and store it in the 'infinite sink' of the ocean. The approach uses an innovative copper-containing polymeric filter and essentially converts CO2 into sodium bicarbonate (aka baking soda) that can be released harmlessly into the ocean. This new hybrid material, or filter, is called DeCarbonHIX (i.e., decarbonization through hybrid ion exchange material). The research has demonstrated a 300 percent increase in the amount of carbon captured compared with existing direct air capture methods.
Published Scallop eyes as inspiration for new microscope objectives



Neuroscientists have developed innovative objectives for light microscopy by using mirrors to produce images. Their design finds correspondence in mirror telescopes used in astronomy on the one hand and the eyes of scallops on the other. The new objectives enable high-resolution imaging of tissues and organs in a much wider variety of immersion media than with conventional microscope lenses.
Published Deep ocean currents around Antarctica headed for collapse, study finds


Antarctic circulation could slow by more than 40 per cent over the next three decades, with significant implications for the oceans and the climate.
Published Mimicking biological enzymes may be key to hydrogen fuel production


An ancient biological enzyme known as nickel-iron hydrogenase may play a key role in producing hydrogen for a renewables-based energy economy, researchers said. Careful study of the enzyme has led chemists to design a synthetic molecule that mimics the hydrogen gas-producing chemical reaction performed by the enzyme.
Published Detecting coral biodiversity in seawater samples


Researchers have developed a method to measure coral biodiversity through extracting the environmental DNA (or eDNA) from a liter of surface seawater collected from above a reef. The method has been confirmed to work through observations made by scientific divers in the same areas of ocean. This has paved the way for large-scale comprehensive surveys of reef-building coral to take place and removes the reliance of direct observations made through scientific scuba diving or snorkeling.
Published Fermented coffee's fruity aromas demystified


Fermented coffee could bring a fruity taste to your morning cup of joe. This new kind of beverage has a raspberry-like taste and aroma, but what causes these sensations has been a mystery. Scientists now report six compounds that contribute to the fermented coffee experience.
Published Pulsing ultrasound waves could someday remove microplastics from waterways


Colorful particles of plastic drift along under the surface of most waterways. These barely visible microplastics -- less than 5 mm wide -- are potentially harmful to aquatic animals and plants, as well as humans. Now, a team reports a two-stage device made with steel tubes and pulsing sound waves that removes most of the plastic particles from real water samples.
Published SMART warnings could protect communities at risk from flooding


Engaging communities in developing a real-time early warning system could help to reduce the often-devastating impact of flooding on people and property -- particularly in mountainous regions where extreme water events are a 'wicked' problem, a new study reveals.
Published Even Sonoran Desert plants aren't immune to climate change


In North America's hottest, driest desert, climate change is causing the decline of plants once thought nearly immortal and replacing them with shorter shrubs that can take advantage of sporadic rainfall and warmer temperatures.
Published Eco-efficient cement could pave the way to a greener future


Scientists develop process to remove toxic heavy metals from coal fly ash, making for greener, stronger concrete.
Published Tiny yet hazardous: New study shows aerosols produced by contaminated bubble bursting are far smaller than predicted


New research has shown that bursting bubbles coated by a thin oil layer produce drops with smaller sizes, greater overall number of drops, and are ejected at a higher velocity, compared to bubbles generated in clean water.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published What do the elements sound like?


In chemistry, we have He, Fe and Ca -- but what about do, re and mi? Using a technique called data sonification, a recent college graduate has converted the visible light given off by each of the elements into soundwaves. The notes produced for each element are unique, complex mixtures and are the first step toward an interactive, musical periodic table.
Published Looking from different perspectives! Proper electronic structure of near-infrared absorbing functional dyes discovered


A research group has discovered that near-infrared absorbing dyes, which had previously been considered to have closed-shell electronic structures, have an intermediate electronic structure, between closed- and open-shell structures. They also found that as the wavelength of near-infrared light that can be absorbed becomes longer the contribution of open-shell forms increases within the dye. These newly discovered characteristics are expected to be utilized to develop new near-infrared absorbing dyes that can absorb longer wavelength near-infrared light.
Published Surprise effect: Methane cools even as it heats


Most climate models do not yet account for a recent discovery: methane traps a great deal of heat in Earth's atmosphere, but also creates cooling clouds that offset 30% of the heat.
Published New type of entanglement lets scientists 'see' inside nuclei


Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.
Published Photosynthesis: Varying roads lead to the reaction center


Chemists use high-precision quantum chemistry to study key elements of super-efficient energy transfer in an important element of photosynthesis.
Published Microplastics limit energy production in tiny freshwater species


Microplastic pollution reduces energy production in a microscopic creature found in freshwater worldwide, new research shows.
Published Closed loop for circular economy: New polymer recycling strategy ensures both high stability and complete recyclability


Large amounts of plastic waste are incinerated or deposited in landfills. This degrades the environment and depletes valuable resources. In this light, recycling plastics such as polymers is promising. However, recycling diminishes their quality. Recently, researchers have proposed a 'closed-loop' recycling process based on polymer microparticles. It produces fully recyclable polymer films with high mechanical stability and fracture energy, which they retain upon recycling.
Published New wood-based technology removes 80% of dye pollutants in wastewater


Researchers have developed a new method that can easily purify contaminated water using a cellulose-based material. This discovery could have implications for countries with poor water treatment technologies and combat the widespread problem of toxic dye discharge from the textile industry.