Showing 20 articles starting at article 801

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Severe Weather, Physics: Optics

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Unlocking the power of photosynthesis for clean energy production      (via sciencedaily.com)     Original source 

Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

'Super-resolution' imaging technology      (via sciencedaily.com)     Original source 

Researchers describe developing a super-resolution imaging platform technology to improve understanding of how nanoparticles interact within cells.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Severe Weather
Published

Atmospheric research provides clear evidence of human-caused climate change signal associated with CO2 increases      (via sciencedaily.com)     Original source 

New research provides clear evidence of a human 'fingerprint' on climate change and shows that specific signals from human activities have altered the temperature structure of Earth's atmosphere.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Scintillating science: Researchers improve materials for radiation detection and imaging technology      (via sciencedaily.com)     Original source 

A team of researchers has improved a new generation of organic-inorganic hybrid materials that can improve image quality in X-ray machines, CT scans and other radiation detection and imaging technologies.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems      (via sciencedaily.com)     Original source 

Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Physics: General Physics: Optics
Published

Exciton fission: One photon in, two electrons out      (via sciencedaily.com)     Original source 

Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: Optics
Published

Scientists capture elusive chemical reaction using enhanced X-ray method      (via sciencedaily.com)     Original source 

Researchers have captured one of the fastest movements of a molecule called ferricyanide for the first time by combining two ultrafast X-ray spectroscopy techniques. They think their approach could help map more complex chemical reactions like oxygen transportation in blood cells or hydrogen production using artificial photosynthesis.

Engineering: Robotics Research Environmental: General Environmental: Water Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum lidar prototype acquires real-time 3D images while fully submerged underwater      (via sciencedaily.com)     Original source 

Researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.

Physics: Optics
Published

Researchers detect and classify multiple objects without images      (via sciencedaily.com)     Original source 

Researchers have developed a new high-speed way to detect the location, size and category of multiple objects without acquiring images or requiring complex scene reconstruction. Because the new approach greatly decreases the computing power necessary for object detection, it could be useful for identifying hazards while driving.

Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Prolonged power outages, often caused by weather events, hit some parts of the U.S. harder than others      (via sciencedaily.com)     Original source 

New research found that Americans already bearing the brunt of climate change and health inequities are most at risk of impact by a lengthy power outage.

Environmental: Ecosystems Environmental: Water Geoscience: Severe Weather
Published

The science behind the life and times of the Earth's salt flats      (via sciencedaily.com)     Original source 

Researchers have characterized two different types of surface water in the hyperarid salars -- or salt flats -- that contain much of the world's lithium deposits. This new characterization represents a leap forward in understanding how water moves through such basins, and will be key to minimizing the environmental impact on such sensitive, critical habitats.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Tunneling electrons      (via sciencedaily.com)     Original source 

By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.

Engineering: Nanotechnology Offbeat: General Physics: General Physics: Optics
Published

Nifty nanoparticles help 'peel back the curtain' into the world of super small things      (via sciencedaily.com)     Original source 

Physicists are using nanoparticles to develop new sources of light that will allow us to 'peel back the curtain' into the world of extremely small objects -- thousands of times smaller than a human hair -- with major gains for medical and other technologies.

Chemistry: Biochemistry Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons      (via sciencedaily.com)     Original source 

A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.

Geoscience: Severe Weather
Published

120-year-old storm's secrets key to understanding weather risks      (via sciencedaily.com)     Original source 

The conversion of handwritten weather records into digital information will help weather better understand future weather risks.

Geoscience: Earth Science Geoscience: Severe Weather
Published

A more precise model of the Earth's ionosphere      (via sciencedaily.com)     Original source 

The ionosphere -- the region of geospace spanning from 60 to 1000 kilometers above the Earth -- impairs the propagation of radio signals from global navigation satellite systems (GNSS) with its electrically charged particles. This is a problem for the ever higher precision required by these systems -- both in research and for applications such as autonomous driving or precise orbit determination of satellites. Models of the ionosphere and its uneven, dynamic charge distribution can help correct the signals for ionospheric delays, which are one of the main error sources in GNSS applications. Researchers have presented a new model of the ionosphere, developed on the basis of neural networks and satellite measurement data from 19 years. In particular, it can reconstruct the topside ionosphere, the upper, electron-rich part of the ionosphere much more precisely than before. It is thus also an important basis for progress in ionospheric research, with applications in studies on the propagation of electromagnetic waves or for the analysis of certain space weather events, for example.

Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Cheaper method for making woven displays and smart fabrics -- of any size or shape      (via sciencedaily.com)     Original source 

Researchers have developed next-generation smart textiles -- incorporating LEDs, sensors, energy harvesting, and storage -- that can be produced inexpensively, in any shape or size, using the same machines used to make the clothing we wear every day.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum entanglement could make accelerometers and dark matter sensors more accurate      (via sciencedaily.com)     Original source 

The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.

Chemistry: Biochemistry Engineering: Robotics Research Physics: Acoustics and Ultrasound Physics: Optics
Published

Versatile, high-speed, and efficient crystal actuation with photothermally resonated natural vibrations      (via sciencedaily.com)     Original source 

Mechanically responsive molecular crystals are extremely useful in soft robotics, which requires a versatile actuation technology. Crystals driven by the photothermal effect are particularly promising for achieving high-speed actuation. However, the response (bending) observed in these crystals is usually small. Now, scientists address this issue by inducing large resonated natural vibrations in anisole crystals with UV light illumination at the natural vibration frequency of the crystal.