Showing 20 articles starting at article 361

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Landslides, Physics: Optics

Return to the site home page

Geoscience: Earthquakes Geoscience: Geography Geoscience: Landslides
Published

New dates for landslides reveal past Seattle fault earthquakes      (via sciencedaily.com)     Original source 

New maps of more than 1,000 deep-seated landslides in the Puget Lowlands of Washington State provide evidence of the last major earthquake along the Seattle Fault about 1,100 years ago -- and may also hold traces of older earthquakes along the fault.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Optics
Published

'Hot' new form of microscopy examines materials using evanescent waves      (via sciencedaily.com)     Original source 

A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.

Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues Physics: Optics
Published

Decarbonizing light-duty transportation in the United States: Study reveals strategies to achieve goal      (via sciencedaily.com)     Original source 

Researchers found that meeting greenhouse gas emissions goals for light-duty vehicles, which are passenger vehicles such as cars and trucks, is possible, but not just by increasing electric vehicle sales.  

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Vacuum in optical cavity can change material's magnetic state without laser excitation      (via sciencedaily.com)     Original source 

Researchers in Germany and the USA have produced the first theoretical demonstration that the magnetic state of an atomically thin material, ?-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material's magnetic order from a zigzag antiferromagnet into a ferromagnet.

Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing      (via sciencedaily.com)     Original source 

Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.

Physics: General Physics: Optics
Published

Bartering light for light: Scientists discover new system to control the chaotic behavior of light      (via sciencedaily.com)     Original source 

Researchers describe a new platform for controlling the chaotic behavior of light by tailoring its scattering patterns using light itself.

Chemistry: Thermodynamics Energy: Alternative Fuels Offbeat: General Physics: Optics
Published

In a surprising finding, light can make water evaporate without heat      (via sciencedaily.com)     Original source 

At the interface of water and air, light can, in certain conditions, bring about evaporation without the need for heat, according to a new study.

Chemistry: Biochemistry Chemistry: Thermodynamics Computer Science: General Engineering: Nanotechnology Physics: Optics
Published

New twist on optical tweezers      (via sciencedaily.com)     Original source 

Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy. 

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: Optics
Published

Photography: One-stop solution for shaping and outlining objects      (via sciencedaily.com)     Original source 

A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

New frequency comb can identify molecules in 20-nanosecond snapshots      (via sciencedaily.com)     Original source 

Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.

Offbeat: General Offbeat: Space Physics: Optics Space: Astronomy Space: Exploration Space: General
Published

To advance space colonization, new research explores 3D printing in microgravity      (via sciencedaily.com)     Original source 

Research into how 3D printing works in a weightless environment aims to support long-term exploration and habitation on spaceships, the moon or Mars.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Physics: Optics
Published

Controlling organoids with light      (via sciencedaily.com)     Original source 

Organoids help researchers understand biological processes in health and in disease. It is, however, difficult to influence the way in which they organize themselves into complex tissues. Now a group has found a new way to do so.

Physics: Optics
Published

Inspection method increases confidence in laser powder bed fusion 3D printing      (via sciencedaily.com)     Original source 

Researchers have improved flaw detection to increase confidence in metal parts that are 3D-printed using laser powder bed fusion.

Physics: Optics
Published

Community-developed guidelines for publishing images help address reproducibility problem in science      (via sciencedaily.com)     Original source 

The use of images in scientific papers is more popular than ever, but there have been no common standards for their publication -- until now.

Physics: Optics
Published

Highest-resolution single-photon superconducting camera      (via sciencedaily.com)     Original source 

Researchers have built a superconducting camera containing 400,000 pixels -- 400 times more than any other device of its type. Having more pixels could open up many new applications in science and biomedical research.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Diapers can be recycled 200 times faster with light      (via sciencedaily.com)     Original source 

More than 100,000 tons of diapers are disposed of annually in Germany. Vast amounts of valuable resources, such as diaper liners, end up in the trash. The liners consist of special polymers, so-called superabsorbers. Researchers have now succeeded in considerably improving their complex recycling process. They use UV radiation to degrade the chemical chains that keep the polymers together. No chemicals are needed. Recycling at room temperature is 200 times faster than conventional recycling. The recycled polymers can then be processed to new adhesives and dyes.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Scientists shed light on potential breakthrough biomedical molecule      (via sciencedaily.com)     Original source 

Developing a new, light-activated method to produce the molecule opens doors for future biomedical applications.

Physics: Optics
Published

Preventing airborne infection without impeding communication with ions and electric field      (via sciencedaily.com)     Original source 

A novel device developed by researchers in a new study utilizes ions and an electric field to effectively capture infectious droplets and aerosols, while letting light and sound pass through to allow communication. The innovation is significant in the wake of the COVID-19 pandemic, since it shows promise in preventing airborne infection while facilitating communication.  

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.