Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: Optics
Published Exploring the effect of ring closing on fluorescence of supramolecular polymers



The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.
Published Low-cost microbe can speed biological discovery



Researchers have created a new version of a microbe to compete economically with E. coli -- a bacteria commonly used as a research tool due to its ability to synthesize proteins -- to conduct low-cost and scalable synthetic biological experiments.
Published Compounds released by bleaching reefs promote bacteria, potentially stressing coral further



New research revealed that when coral bleaching occurs, corals release unique organic compounds into the surrounding water that not only promote bacterial growth overall, but select for opportunistic bacteria that may further stress reefs.
Published Researchers uncover a key link in legume plant-bacteria symbiosis



Researchers have unveiled a groundbreaking discovery shedding light on the intricate play between legume plants and nitrogen-fixing bacteria. Their study details the crucial role played by phosphorylation in driving the formation of symbiotic organs, known as nodules, on plant roots. The long-term goal is to enable symbiosis in root nodules in important crops such as barley, maize and rice to avoid the use of chemical fertilizers.
Published Researchers studying ocean transform faults, describe a previously unknown part of the geological carbon cycle



This study reports widespread mineral carbonation of mantle rocks in an oceanic transform fueled by magmatic degassing of CO2. The findings describe a previously unknown part of the geological carbon cycle in transform faults that represent one of the three principal plate boundaries on Earth. The confluence of tectonically exhumed mantle rocks and CO2-rich alkaline basalt formed through limited extents of melting characteristic of the St. Paul's transform faults may be a pervasive feature at oceanic transform faults in general. Because transform faults have not been accounted for in previous estimates of global geological CO2 fluxes, the mass transfer of magmatic CO2 to the altered oceanic mantle and seawater may be larger than previously thought.
Published Global deforestation leads to more mercury pollution



Researchers find deforestation accounts for about 10 percent of global human-made mercury emissions. While it cannot be the only solution, they suggest reforestation could increase global mercury uptake by about 5 percent.
Published Key advance for capturing carbon from the air



A chemical element so visually striking that it was named for a goddess shows a 'Goldilocks' level of reactivity -- neither too much nor too little -- that makes it a strong candidate as a carbon scrubbing tool.
Published How electron spectroscopy measures exciton 'holes'



Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published Conversion process turns greenhouse gas into ethylene



Engineers have created a more efficient way of converting carbon dioxide into valuable products while simultaneously addressing climate change.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published Molecular manganese complex as superphotooxidant



Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.
Published Industrial pollution leaves its mark in Mediterranean corals



For the first time, pollutants from burning fossil fuels have been found embedded in corals, offering scientists a potential new tool to track the history of pollution, finds a new study.
Published Researchers unveil method to detect 'forever chemicals' in under 3 minutes



PFAS have earned the name 'forever chemicals' with good reason -- the human-made compounds, which can take thousands of years to degrade and are found in everything from grease-resistant food packaging to water-repellent clothing, have made their way into nearly half the U.S. tap water supply.
Published Technique could improve the sensitivity of quantum sensing devices



A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.
Published Foul fumes pose pollinator problems



Scientists have discovered that nighttime air pollution -- coming primarily form car exhaust and power plant emissions -- is responsible for a major drop in nighttime pollinator activity. Nitrate radicals (NO3) in the air degrade the scent chemicals released by a common wildflower, drastically reducing the scent-based cues that its chief pollinators rely on to locate the flower. The findings show how nighttime pollution creates a chain of chemical reactions that degrades scent cues, leaving flowers undetectable by smell. The researchers also determined that pollution likely has worldwide impacts on pollination.
Published Spiral-shaped lens provides clear vision at a range of distances and lighting conditions



Researchers have developed a spiral-shaped lens that maintains clear focus at different distances in varying light conditions. The new lens works much like progressive lenses used for vision correction but without the distortions typically seen with those lenses. It could help advance contact lens technologies, intraocular implants for cataracts and miniaturized imaging systems.
Published Greenhouse gas repurposed



Cutting-edge research converted waste carbon dioxide into a potential precursor for chemicals and carbon-free fuel.
Published Scientists develop artificial 'worm gut' to break down plastics



A team of scientists has developed an artificial 'worm gut' to break down plastics, offering hope for a nature-inspired method to tackle the global plastic pollution problem.
Published What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer



Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.