Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: Optics
Published Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech



Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.
Published Don't overeat: How archaea toggle the nitrogen-uptake switch



By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.
Published Deepwater Horizon oil spill study could lead to overhaul of cleanup processes worldwide



New research could lead to major improvements in marine oil spill cleanup processes. The innovative study assessed the impact of the Deepwater Horizon oil spill on microscopic seawater bacteria that perform a significant role in ecosystem functioning.
Published Groundbreaking discovery enables cost-effective and eco-friendly green hydrogen production



A research team has developed a novel catalyst for the high-efficiency and stable production of high-purity green hydrogen.
Published Ice age could help predict oceans' response to global warming



A new way to measure the ocean oxygen level and its connections with carbon dioxide in the Earth's atmosphere during the last ice age could help explain the role oceans played in past glacial melting cycles and improve predictions of how ocean carbon cycles will respond to global warming.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published Researchers create faster and cheaper way to print tiny metal structures with light



Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).
Published Light it up: Reimagining the optical diode effect



A research group has discovered significant nonreciprocal optical absorption of LiNiPO4, referred to as the optical diode effect, in which divalent nickel (Ni2+) ions are responsible for magnetism, by passing light at shortwave infrared wavelengths used in optical communications. Furthermore, they have uncovered that it is possible to switch the optical diode effect by applying a magnetic field. This is a step forward in the development of an innovative optical isolator that is more compact and can control light propagation, replacing the conventional optical isolators with complex structures.
Published Lighting the path: Exploring exciton binding energies in organic semiconductors



Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power



In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Efficiently moving urea out of polluted water is coming to reality



Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.
Published Cobalt-free batteries could power cars of the future



A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published Rain can spoil a wolf spider's day, too



Researchers found that wolf spiders can't signal others or perceive danger from predators as easily on rain-soaked leaves compared to dry ones. Even communicating with would-be mates is harder after it rains.
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Ultrafast laser pulses could lessen data storage energy needs



A discovery from an experiment with magnetic materials and ultrafast lasers could be a boon to energy-efficient data storage.
Published Let it glow: Scientists develop new approach to detect 'forever chemicals' in water



Researchers have created a new way to detect 'forever chemical' pollution in water, via a luminescent sensor.
Published Researchers optimize 3D printing of optically active nanostructures



The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
Published US air pollution rates on the decline but pockets of inequities remain



Our latest study shows there are racial/ethnic and socioeconomic disparities in air pollution emissions reductions, particularly in the industry and energy generation sectors. The findings provide a national investigation of air pollution emission changes in the 40 years following the enactment of the Clean Air Act (CAA). Until now, studies have primarily focused on evaluating air pollution disparities at a single time point, focusing on pollutant concentrations instead of emissions. A focus on emissions, however, has more direct implications for regulations and policies. In this study, the researchers used county-level data to evaluate racial/ethnic and socioeconomic disparities in air pollution emissions changes in the contiguous U.S. from 1970 to 2010.
Published Glowing COVID-19 diagnostic test prototype produces results in one minute



Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.
Published New AI makes better permafrost maps



New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.