Showing 20 articles starting at article 541

< Previous 20 articles        Next 20 articles >

Categories: Offbeat: Computers and Math, Physics: Optics

Return to the site home page

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How quantum light 'sees' quantum sound      (via sciencedaily.com)     Original source 

Researchers have proposed a new way of using quantum light to 'see' quantum sound. A new paper reveals the quantum-mechanical interplay between vibrations and particles of light, known as photons, in molecules. It is hoped that the discovery may help scientists better understand the interactions between light and matter on molecular scales. And it potentially paves the way for addressing fundamental questions about the importance of quantum effects in applications ranging from new quantum technologies to biological systems.

Computer Science: General Physics: Optics
Published

Smartphone attachment could increase racial fairness in neurological screening      (via sciencedaily.com)     Original source 

A new smartphone attachment could enable people to screen for a variety of neurological conditions, such as Alzheimer's disease and traumatic brain injury, at low cost -- and do so accurately regardless of their skin tone. The attachment fits over a smartphone's camera to capture clear video of pupil size changes, which can offer clues about an individual's neurological functions. The device helps the camera see the pupil easily in dark eye colors. 

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Plant-based materials give 'life' to tiny soft robots      (via sciencedaily.com)     Original source 

A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General
Published

Simulating cold sensation without actual cooling      (via sciencedaily.com)     Original source 

The perception of persistent thermal sensations, such as changes in temperature, tends to gradually diminish in intensity as our bodies become accustomed to the temperature. This phenomenon leads to a shift in our perception of temperature when transitioning between different scenes in a virtual environment. Researchers have now developed a technology to generate a virtual cold sensation via a non-contact method without physically altering the skin temperature.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Chemists, engineers craft adjustable arrays of microscopic lenses      (via sciencedaily.com)     Original source 

A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.

Environmental: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Accelerating waves shed light on major problems in physics      (via sciencedaily.com)     Original source 

Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies for accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, general theory of relativity, as well as the arrow of time.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

International team develops novel DNA nano engine      (via sciencedaily.com)     Original source 

An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Scientists propose super-bright light sources powered by quasiparticles      (via sciencedaily.com)     Original source 

Researchers have proposed ways to use quasiparticles to create light sources as powerful as the most advanced ones in existence today, but much smaller.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular Chemistry: Biochemistry Physics: Optics
Published

Soft optical fibers block pain while moving and stretching with the body      (via sciencedaily.com)     Original source 

New soft, implantable fibers can deliver light to major nerves through the body. They are an experimental tool for scientists to explore the causes and potential treatments for peripheral nerve disorders in animal models.

Computer Science: General Physics: Optics
Published

From square to cube: Hardware processing for AI goes 3D, boosting processing power      (via sciencedaily.com)     Original source 

A breakthrough development in photonic-electronic hardware could significantly boost processing power for AI and machine learning applications. The approach uses multiple radio frequencies to encode data, enabling multiple calculations to be carried out in parallel. The method shows promise for outperforming state-of-the-art electronic processors, with further enhancements possible.

Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Wearable device makes memories and powers up with the flex of a finger      (via sciencedaily.com)     Original source 

Researchers have invented an experimental wearable device that generates power from a user's bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Choosing exoskeleton settings like a radio station      (via sciencedaily.com)     Original source 

Taking inspiration from music streaming services, a team of engineers has designed the simplest way for users to program their own exoskeleton assistance settings.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Milestone: Miniature particle accelerator works      (via sciencedaily.com)     Original source 

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Superlensing without a super lens: Physicists boost microscopes beyond limits      (via sciencedaily.com)     Original source 

Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists create new form of antenna for radio waves      (via sciencedaily.com)     Original source 

Physicists have used a small glass bulb containing an atomic vapor to demonstrate a new form of antenna for radio waves. The bulb was 'wired up' with laser beams and could therefore be placed far from any receiver electronics.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Photonic crystals bend light as though it were under the influence of gravity      (via sciencedaily.com)     Original source 

Scientists have theoretically predicted that light can be bent under pseudogravity. A recent study by researchers using photonic crystals has demonstrated this phenomenon. This breakthrough has significant implications for optics, materials science, and the development of 6G communications.  

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Simulations of 'backwards time travel' can improve scientific experiments      (via sciencedaily.com)     Original source 

Physicists have shown that simulating models of hypothetical time travel can solve experimental problems that appear impossible to solve using standard physics.

Computer Science: Encryption Physics: Optics
Published

New study unveils stretchable high-resolution user-interactive synesthesia displays for visual--acoustic encryption      (via sciencedaily.com)     Original source 

A research team has succeeded in developing a cutting-edge display using transfer-printing techniques, propelling the field of multifunctional displays into new realms of possibility.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Widely tuneable terahertz lasers boost photo-induced superconductivity in K3C60      (via sciencedaily.com)     Original source 

Researchers have long been exploring the effect of using tailored laser drives to manipulate the properties of quantum materials away from equilibrium. One of the most striking demonstrations of these physics has been in unconventional superconductors, where signatures of enhanced electronic coherences and super-transport have been documented in the resulting non-equilibrium states. However, these phenomena have not yet been systematically studied or optimized, primarily due to the complexity of the experiments. Technological applications are therefore still far removed from reality. In a recent experiment, this same group of researchers discovered a far more efficient way to create a previously observed metastable, superconducting-like state in K3C60 using laser light.

Physics: Optics
Published

Enlightening insects: Morpho butterfly nanostructure inspires technology for bright, balanced lighting      (via sciencedaily.com)     Original source 

Researchers developed a nanostructured light diffuser that provides balanced lighting by diffracting blue and red light, and can be cleaned by simple rinsing with water. The diffuser consists of cheap materials and can be shaped with common tools. A protective glass coating maintains the diffuser's optical performance yet adds durability. This work might improve the visual performance of everyday lighting displays.