Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published How pulsating pumping can lead to energy savings


Pumping liquids may seem like a solved problem but optimizing the process is still an area of active research. Any pumping application -- from industrial scales to heating systems at home -- would benefit from a reduction in energy demands. Researchers now showed how pulsed pumping can reduce both friction from and energy consumption of pumping. For this, they took inspiration from a pumping system intimately familiar to everyone: the human heart.
Published Atomic-scale spin-optical laser: New horizon of optoelectronic devices


Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Peering into nanofluidic mysteries one photon at a time



Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Breathe! The shape-shifting ball that supports mental health


A soft ball designed to support mental health by 'personifying' breath has been invented by a computer science student.
Published Researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potential


Optical-resolution photoacoustic microscopy is an up-and-coming biomedical imaging technique for studying a broad range of diseases, such as cancer, diabetes and stroke. But its insufficient sensitivity has been a longstanding obstacle for its wider application. Recently, a research team developed a multi-spectral, super-low-dose photoacoustic microscopy system with a significant improvement in the system sensitivity limit, enabling new biomedical applications and clinical translation in the future.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Vision for future micro-optical technology based on metamaterials


Historically, metasurface research has concentrated on the full manipulation of light's characteristics, resulting in a diverse array of optical devices such as metalenses, metaholograms, and beam diffraction devices. Nevertheless, recent studies have shifted their focus toward integrating metasurfaces with other optical components.
Published Tiny, shape-shifting robot can squish itself into tight spaces


Imagine a robot that can wedge itself through the cracks in rubble to search for survivors trapped in the wreckage of a collapsed building. Engineers are working toward to that goal with CLARI, short for Compliant Legged Articulated Robotic Insect.
Published Paving the way for advanced quantum sensors


Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.
Published Brighter comb lasers on a chip mean new applications


Researchers have shown that dissipative Kerr solitons (DKSs) can be used to create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications. The advance could lead to chip-based instruments that can make precision measurements that were previously possible only in a few specialized laboratories.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Which radio waves disrupt the magnetic sense in migratory birds?


Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Scientists use quantum device to slow down simulated chemical reaction 100 billion times


Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.
Published Scientists invent new way to sort cells by type using light


Researchers have developed and demonstrated a new method for high-throughput single-cell sorting that uses stimulated Raman spectroscopy rather than the traditional approach of fluorescence-activated cell sorting. The new approach could offer a label-free, nondestructive way to sort cells for a variety of applications, including microbiology, cancer detection and cell therapy.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published AI helps robots manipulate objects with their whole bodies


A new AI technique enables a robot to develop complex plans for manipulating an object using its entire hand, not just fingertips. This model can generate effective plans in about a minute using a standard laptop.
Published Scientists invent micrometers-thin battery charged by saline solution that could power smart contact lenses


Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses.