Showing 20 articles starting at article 841
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Optics
Published Bending 2D nanomaterial could 'switch on' future technologies


Materials scientists have uncovered a property of ferroelectric 2D materials that could be exploited in future devices.
Published The positive outlooks of studying negatively-charged chiral molecules


The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.
Published Scholars unify color systems using prime numbers


Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Edible electronics: How a seaweed second skin could transform health and fitness sensor tech


Scientists have developed biodegradable algae-based hydrogels for strain sensing devices -- such as those used in health monitors worn by runners and hospital patients to track heart rate -- using natural elements like rock salt, water and seaweed, combined with graphene. As well as being more environmentally friendly than polymer-based hydrogels, commonly used in health sensor technology, the graphene algae sensors perform strongly in terms of sensitivity.
Published Hansel and Gretel's breadcrumb trick inspires robotic exploration of caves on Mars and beyond


Future space missions likely will send robots to scout out underground habitats for astronauts. Engineers have now developed a system that would enable autonomous vehicles to explore caves, lava tubes and even oceans on other worlds on their own.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published A motion freezer for many particles


From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.
Published Will future computers run on human brain cells?


A 'biocomputer' powered by human brain cells could be developed within our lifetime, according to researchers who expect such technology to exponentially expand the capabilities of modern computing and create novel fields of study.
Published Augmented reality headset enables users to see hidden objects


Researchers developed an augmented reality headset called X-AR that combines computer vision and wireless perception to find hidden objects in a room and then guide the wearer to retrieve the targeted item.
Published Tiny new climbing robot was inspired by geckos and inchworms


A tiny robot that could one day help doctors perform surgery was inspired by the incredible gripping ability of geckos and the efficient locomotion of inchworms.
Published Reaching like an octopus: A biology-inspired model opens the door to soft robot control


Octopus arms coordinate nearly infinite degrees of freedom to perform complex movements such as reaching, grasping, fetching, crawling, and swimming. How these animals achieve such a wide range of activities remains a source of mystery, amazement, and inspiration. Part of the challenge comes from the intricate organization and biomechanics of the internal muscles.
Published Faster and sharper whole-body imaging of small animals with deep learning


A research team presents technology that enhances photoacoustic computed tomography using a deep-learning approach.
Published Fastest laser camera films combustion in real time


A research team has developed one of the world's fastest single-shot laser cameras, which is at least a thousand times faster than today's most modern equipment for combustion diagnostics. The discovery has enormous significance for studying the lightning-fast combustion of hydrocarbons.
Published Making engineered cells dance to ultrasound


A team has developed a method for selectively manipulating genetically engineered cells with ultrasound.
Published Let there be (controlled) light


In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.
Published The quantum twisting microscope: A new lens on quantum materials


One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.
Published Wireless, soft e-skin for interactive touch communication in the virtual world


Sensing a hug from each other via the internet may be a possibility in the near future. A research team recently developed a wireless, soft e-skin that can both detect and deliver the sense of touch, and form a touch network allowing one-to-multiuser interaction. It offers great potential for enhancing the immersion of distance touch communication.
Published Hands-free tech adds realistic sense of touch in extended reality


Researchers have demonstrated a new hands-free approach to convey realistic haptic feedback in virtual reality (VR). Their 'multisensory pseudo-haptics' uses a combination of headset visuals and tactile feedback from a wrist bracelet to convey sensations of touch.
Published Artificial intelligence conjures proteins that speed up chemical reactions


Scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in the field of protein design as new enzymes could have many uses across medicine and industrial manufacturing. The research team devised deep-learning, artificial intelligence algorithms that created light-emitting enzymes called luciferases. Laboratory testing confirmed that the new enzymes can recognize specific chemicals and emit light very efficiently.