Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Plants and Animals, Physics: Optics
Published Hotter than infinity: Light pulses can behave like an exotic gas


In our modern society huge amounts of data are transmitted every day, mainly as short optical pulses propagating through glass fibers. With the steadily increasing density of such optical signals, their interaction grows, which can lead to data loss. Physicists are now investigating how to control large numbers of optical pulses as precisely as possible to reduce the effect of such interactions. To this end they have monitored an ensemble of optical pulses as they propagated through an optical fiber and have found that it follows fixed rules -- albeit mainly those of thermodynamics.
Published Island-inhabiting giants, dwarfs more vulnerable to extinction


Island-dwelling mammal species often expand or contract in size, becoming giant or dwarf versions of their mainland counterparts. A new Science study from a global team shows that those giants and dwarfs have faced extreme risk of extinction -- an existential threat exacerbated by the arrival of humans.
Published Ringing an electronic wave: Elusive massive phason observed in a charge density wave


Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.
Published Colloids get creative to pave the way for next generation photonics


Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published What 'Chornobyl dogs' can tell us about survival in contaminated environments


In the first step toward understanding how dogs -- and perhaps humans -- might adapt to intense environmental pressures such as exposure to radiation, heavy metals, or toxic chemicals, researchers found that two groups of dogs living within the Chernobyl Exclusion Zone showed significant genetic differences between them. The results indicate that these are two distinct populations that rarely interbreed. While earlier studies focused on the effects of the Chernobyl Nuclear Power Plant disaster on various species of wildlife, this is the first investigation into the genetic structure of stray dogs living near the Chernobyl nuclear power plant.
Published Enhancing at-home COVID tests with glow-in-the dark materials


Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.
Published Bumblebees learn new 'trends' in their behavior by watching and learning


A new study has shown that bumblebees pick up new 'trends' in their behavior by watching and learning from other bees, and that one form of a behavior can spread rapidly through a colony even when a different version gets discovered.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published Can artificial intelligence help find life on Mars or icy worlds?


Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.
Published Bending 2D nanomaterial could 'switch on' future technologies


Materials scientists have uncovered a property of ferroelectric 2D materials that could be exploited in future devices.
Published The positive outlooks of studying negatively-charged chiral molecules


The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.
Published Scholars unify color systems using prime numbers


Existing color systems, such as RGB and CYMK, are all text-based and require a large range of values to represent different colors, making them difficult to compute and time-consuming to convert. Recently, researchers made a breakthrough by inventing an innovative color system, called 'C235', based on prime numbers, enabling efficient encoding and effective color compression. It can unify existing color systems and has the potential to be applied in various applications, like designing an energy-saving LCD system and colorizing DNA codons.
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Edible electronics: How a seaweed second skin could transform health and fitness sensor tech


Scientists have developed biodegradable algae-based hydrogels for strain sensing devices -- such as those used in health monitors worn by runners and hospital patients to track heart rate -- using natural elements like rock salt, water and seaweed, combined with graphene. As well as being more environmentally friendly than polymer-based hydrogels, commonly used in health sensor technology, the graphene algae sensors perform strongly in terms of sensitivity.
Published A motion freezer for many particles


From the way that particles scatter light, it is possible to calculate a special light field that can slow these particles down. This is a new and powerful method to cool particles down to extremely low temperatures.
Published Super-fast insect urination powered by the physics of superpropulsion


Tiny insects known as sharpshooters excrete by catapulting urine drops at incredible accelerations. By using computational fluid dynamics and biophysical experiments, the researchers studied the fluidic, energetic, and biomechanical principles of excretion, revealing how an insect smaller than the tip of a pinky finger performs a feat of physics and bioengineering -- superpropulsion.
Published Tiny new climbing robot was inspired by geckos and inchworms


A tiny robot that could one day help doctors perform surgery was inspired by the incredible gripping ability of geckos and the efficient locomotion of inchworms.
Published Dinosaur claws used for digging and display


Dinosaur claws had many functions, but now a team has shown some predatory dinosaurs used their claws for digging or even for display.