Biology: General Ecology: Endangered Species Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Ancient large kangaroo moved mainly on four legs, according to new research      (via sciencedaily.com)     Original source 

A type of extinct kangaroo that lived during the Pleistocene around two and a half million to ten thousand years ago, known as the 'giant wallaby', was a poor hopper, a study has found.

Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: General
Published

Life underground suited newly discovered dinosaur fine      (via sciencedaily.com)     Original source 

A newly discovered ancestor of Thescelosaurus shows evidence that these animals spent at least part of their time in underground burrows. The new species contributes to a fuller understanding of life during the mid-Cretaceous -- both above and below ground.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Single atoms show their true color      (via sciencedaily.com)     Original source 

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Physics: Optics
Published

Precise and less expensive 3D printing of complex, high-resolution structures      (via sciencedaily.com)     Original source 

Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications, from consumer electronics to the biomedical field.

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Energy: Alternative Fuels Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Giant clams may hold the answers to making solar energy more efficient      (via sciencedaily.com)     Original source 

Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Optoelectronics gain spin control from chiral perovskites and III-V semiconductors      (via sciencedaily.com)     Original source 

A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Organic material from Mars reveals the likely origin of life's building blocks      (via sciencedaily.com)     Original source 

Two samples from Mars together deliver clear evidence of the origin of Martian organic material. The study presents solid evidence for a prediction made over a decade ago that could be key to understanding how organic molecules, the foundation of life, were first formed here on Earth.

Chemistry: Biochemistry Physics: Optics
Published

Light targets cells for death and triggers immune response with laser precision      (via sciencedaily.com)     Original source 

A new method of precisely targeting troublesome cells for death using light could unlock new understanding of and treatments for cancer and inflammatory diseases.

Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

'World record' for data transmission speed      (via sciencedaily.com)     Original source 

Researchers have sent data at a record rate of 402 terabits per second using commercially available optical fiber. This beats their previous record, announced in March 2024, of 301 terabits or 301,000,000 megabits per second using a single, standard optical fiber.

Computer Science: General Physics: Optics
Published

New computational microscopy technique provides more direct route to crisp images      (via sciencedaily.com)     Original source 

A new computational microscopy technique solves for true high-resolution images without the guesswork that has limited the precision of other techniques.

Environmental: Water Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Paleontology: Climate
Published

Investigating newly discovered hydrothermal vents at depths of 3,000 meters off Svalbard      (via sciencedaily.com)     Original source 

Hydrothermal vents can be found around the world at the junctions of drifting tectonic plates. But there are many hydrothermal fields still to be discovered. During a 2022 expedition of the MARIA S. MERIAN, the first field of hydrothermal vents on the 500-kilometer-long Knipovich Ridge off the coast of Svalbard was discovered.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Environmental: General Physics: Optics
Published

Light-controlled artificial maple seeds could monitor the environment even in hard-to-reach locations      (via sciencedaily.com)     Original source 

Researchers have developed a tiny robot replicating the aerial dance of falling maple seeds. In the future, this robot could be used for real-time environmental monitoring or delivery of small samples even in inaccessible terrain such as deserts, mountains or cliffs, or the open sea. This technology could be a game changer for fields such as search-and-rescue, endangered species studies, or infrastructure monitoring.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Ecology: Endangered Species Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: General
Published

Last surviving woolly mammoths were inbred but not doomed to extinction      (via sciencedaily.com)     Original source 

The last population of woolly mammoths was isolated on Wrangel Island off the coast of Siberia 10,000 years ago, when sea levels rose and cut the mountainous island off from the mainland. A new genomic analysis reveals that the isolated mammoths, who lived on the island for the subsequent 6,000 years, originated from at most 8 individuals but grew to 200--300 individuals within 20 generations. The researchers report that the Wrangel Island mammoths' genomes showed signs of inbreeding and low genetic diversity but not to the extent that it can explain their ultimate (and mysterious) extinction.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather Physics: Optics
Published

Common plastics could passively cool and heat buildings with the seasons      (via sciencedaily.com)     Original source 

By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.