Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Organic Chemistry, Physics: General

Return to the site home page

Physics: General Physics: Optics Physics: Quantum Physics
Published

Light-induced Meissner effect      (via sciencedaily.com)     Original source 

Researchers have developed a new experiment capable of monitoring the magnetic properties of superconductors at very fast speeds.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality      (via sciencedaily.com)     Original source 

Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.

Chemistry: Biochemistry Energy: Nuclear Physics: General
Published

Quadrupolar nuclei measured by zero-field NMR      (via sciencedaily.com)     Original source 

Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A breakthrough on the edge: One step closer to topological quantum computing      (via sciencedaily.com)     Original source 

Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Computer Science: General Engineering: Nanotechnology Physics: General
Published

Detecting defects in tomorrow's technology      (via sciencedaily.com)     Original source 

New research offers an enhanced understanding of common defects in transition-metal dichalcogenides (TMDs) -- a potential replacement for silicon in computer chips -- and lays the foundation for etching smaller features.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemistry inspired by one-pot cooking      (via sciencedaily.com)     Original source 

Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells      (via sciencedaily.com)     Original source 

Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Single atoms show their true color      (via sciencedaily.com)     Original source 

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications      (via sciencedaily.com)     Original source 

A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.

Chemistry: Inorganic Chemistry Physics: General
Published

Scientists discover way to 'grow' sub-nanometer sized transistors      (via sciencedaily.com)     Original source 

A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize an improved building block for medicines      (via sciencedaily.com)     Original source 

Research could help drug developers improve the safety profiles of medications and reduce side effects.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A genetic algorithm for phononic crystals      (via sciencedaily.com)     Original source 

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Computer Science: General Mathematics: Modeling Physics: General Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Machine learning could aid efforts to answer long-standing astrophysical questions      (via sciencedaily.com)     Original source 

Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials      (via sciencedaily.com)     Original source 

In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.