Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: General
Published How electron spectroscopy measures exciton 'holes'



Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.
Published Conversion process turns greenhouse gas into ethylene



Engineers have created a more efficient way of converting carbon dioxide into valuable products while simultaneously addressing climate change.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published Molecular manganese complex as superphotooxidant



Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants, including chromium, iron, and cobalt. All these photocatalysts require high energy light for excitation and their oxidizing power has not yet been fully exploited. Furthermore, precious and hence expensive metals are the decisive ingredients in most cases. A team of researchers has now developed a new molecular system based on the element manganese. Manganese, as opposed to precious metals, is the third most abundant metal after iron and titanium and hence widely available and very cheap.
Published New process allows full recovery of starting materials from tough polymer composites



In a win for chemistry, inventors have designed a closed-loop path for synthesizing an exceptionally tough carbon-fiber-reinforced polymer and later recovering all of its starting materials.
Published Technique could improve the sensitivity of quantum sensing devices



A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid



For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published Combining materials may support unique superconductivity for quantum computing



A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Smart earrings can monitor a person's temperature



Researchers introduced the Thermal Earring, a wireless wearable that continuously monitors a user's earlobe temperature. Potential applications include tracking signs of ovulation, stress, eating and exercise. The smart earring prototype is about the size and weight of a small paperclip and has a 28-day battery life.
Published Japan's electric vehicle transition by 2035 may be insufficient to combat the climate crisis, but there are solutions



Researchers report that Japan's policy of banning the sale of new gas vehicles by 2035 may be insufficient to reduce the country's CO2 emissions. The team's analysis showed that to effectively reach their climate goals, Japan must also implement policies that extend vehicle lifetime, implement more renewable energy into its energy sector, and decarbonize the manufacturing process of vehicles.
Published New study finds 'sweet spot' for length of yarn-shaped supercapacitors



Researchers have identified a 'sweet spot' at which the length of a threadlike energy storage technology called a 'yarn-shaped supercapacitor' (YSC) yields the highest and most efficient flow of energy per unit length.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Unveiling the generation principles of charged particles 'trion' in 2D semiconductor



Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.
Published Microbial division of labor produces higher biofuel yields



Scientists have found a way to boost ethanol production via yeast fermentation, a standard method for converting plant sugars into biofuels. Their approach relies on careful timing and a tight division of labor among synthetic yeast strains to yield more ethanol per unit of plant sugars than previous approaches have achieved.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published Scientists create effective 'spark plug' for direct-drive inertial confinement fusion experiments



Scientists completed several successful attempts to fire 28 kilojoules of laser energy at small capsules filled with deuterium and tritium fuel, causing the capsules to implode and produce a plasma hot enough to initiate fusion reactions between the fuel nuclei. These results demonstrate an effective 'spark plug' for direct-drive methods of inertial confinement fusion.
Published Magnesium protects tantalum, a promising material for making qubits



Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.
Published A sleeker facial recognition technology tested on Michelangelo's David



Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.
Published A physical qubit with built-in error correction



Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.
Published Photonics-based wireless link breaks speed records for data transmission



Researchers demonstrated a 300 GHz-band wireless link that was able to transmit data over a single channel at a rate of 240 gigabits per second. The wireless communication system employs signal generators based on lasers that have ultra-low phase noise in the sub-terahertz band. This rate is the highest so far reported at these frequencies and is a substantial step forward in 300 GHz-band communications for 6G networks.