Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: General
Published Unifying matter, energy and consciousness



Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.
Published Wireless, battery-free electronic 'stickers' gauge forces between touching objects



Engineers developed electronic 'stickers' that measure the force exerted by one object upon another. The force stickers are wireless, run without batteries and fit in tight spaces, making them versatile for a wide range of applications, from surgical robots to smart implants and inventory tracking.
Published Modular dam design could accelerate the adoption of renewable energy



Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.
Published Ionic crystal generates molecular ions upon positron irradiation, finds new study



The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Comfort with a smaller carbon footprint



Researchers have developed a data-driven AI algorithm for controlling the heating and cooling of an office building. The system does not require ambient sensors or specific knowledge of the building's rooms. During heating operations, the system was able to achieve energy savings of up to 30%, which can represent significant reductions to cost and environmental impact.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Insect cyborgs: Towards precision movement



Insect cyborgs may sound like something straight out of the movies, but hybrid insect computer robots, as they are scientifically called, could pioneer a new future for robotics. It involves using electrical stimuli to control an insect’s movement. Now, an international research group has conducted a study on the relationship between electrical stimulation in stick insects' leg muscles and the resulting torque (the twisting force that causes the leg to move).
Published Lasers deflected using air



Using a novel method, beams of laser light can be deflected using air alone. An invisible grating made only of air is not only immune to damage from the laser light, but it also preserves the original quality of the beam.
Published Disaster-proofing sustainable neighborhoods requires thorough long-term planning



Engineers and scientists look at how thoughtful design can reduce a sustainably-designed neighborhood’s energy vulnerability during power disruptions, as well as which design characteristics are needed if and when local populations need to move to shelters. Researchers analyzed the design and energy characteristics of particular kinds of buildings and neighborhoods to assess their vulnerabilities and their access to alternative and renewable energy sources. The authors use several scenarios involving different lengths of power disruption to see which kind of response is most beneficial to the populations affected.
Published Metal-loving microbes could replace chemical processing of rare earths



Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.
Published Intense lasers shine new light on the electron dynamics of liquids



The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.
Published Chi-Nu experiment ends with data to support nuclear security, energy reactors



The results of the Chi-Nu physics experiment at Los Alamos National Laboratory have contributed essential, never-before-observed data for enhancing nuclear security applications, understanding criticality safety and designing fast-neutron energy reactors.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.
Published 3D-printed plasmonic plastic enables large-scale optical sensor production



Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.
Published Capturing CO2 with electricity: A microbial enzyme inspires electrochemistry



Humanity continuously emits greenhouse gases and thereby worsens global warming. Increasing research efforts go into developing strategies to convert these gases, such as carbon dioxide (CO2), into valuable products. CO2 accumulates dramatically over the years and is chemically very stable, thus challenging to transform. Yet, for billions of years, some microbes have actively captured CO2 using highly efficient enzymes. Scientists have now isolated one of these enzymes. When the enzyme was electronically branched on an electrode, they observed the conversion of CO2 to formate with perfect efficiency. This phenomenon will inspire new CO2-fixation systems because of its remarkable directionality and rates.
Published A new twist on rechargeable battery performance



Rechargeable battery performance could be improved by a new understanding of how they work at the molecular level. Researchers upend what's known about how rechargeable batteries function.
Published Down goes antimatter! Gravity's effect on matter's elusive twin is revealed


For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
Published Powering the quantum revolution: Quantum engines on the horizon



Scientists unveil exciting possibilities for the development of highly efficient quantum devices.