Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: General
Published Scientists develop new method to recover high-purity silicon from expired solar panels for upcycling into lithium-ion batteries


Scientists have devised an efficient method of recovering high-purity silicon from expired solar panels to produce lithium-ion batteries that could help meet the increasing global demand to power electric vehicles.
Published Devices offers long-distance, low-power underwater communication


A new underwater communication and networking technique can achieve kilometer-scale ranges while consuming about one-millionth the power required by current communication methods.
Published New material offers more durable, sustainable multi-level non-volatile phase change memory


Researchers scientists have unlocked a new realm of possibilities for non-volatile phase change memory, a type of electronic memory capable of retaining data even without power. Traditionally, researchers have relied on chalcogenides, materials with reversible electrical properties during transitions between crystalline and amorphous states. But an exciting alternative has emerged in the form of layered nickelates, complex oxide materials composed of nickel ions. These nickelates, with their unique layered structure and thermally reversible switching of room-temperature electrical resistivity, offer superior performance and sustainability potential.
Published Electrifying heavy-duty vehicles could reduce environmental inequalities


If the region surrounding Chicago -- North America's largest freight hub -- shifted just 30% of its current on-road heavy-duty vehicles to electric versions, it would substantially reduce pollution and save hundreds of lives per year, with the benefits largely concentrated in disadvantaged communities, according to a new study. The study authors highlight that neighborhoods with predominantly Black, Hispanic and Latinx residents would benefit the most -- potentially reducing disproportionate pollution and health burdens in historically marginalized areas.
Published Atomic-scale spin-optical laser: New horizon of optoelectronic devices


Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.
Published Pioneering beyond-silicon technology via residue-free field effect transistors


Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Scientists develop an energy-efficient wireless power and information transfer system


Simultaneous wireless information and power transfer (SWIPT)-aided nonorthogonal multiple access (NOMA) system, used for communication in the Industrial Internet of Things (IIoTs), suffers from significant energy loss with transmission distance. Now, researchers have developed an energy-efficient framework by applying SWIPT-NOMA to a distributed antenna system. This technology is expected to pave the way for more efficient and optimized IoT environments.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Energy storage in molecules


Molecular photoswitches that can both convert and store energy could be used to make solar energy harvesting more efficient. A team of researchers has used a quantum computing method to find a particularly efficient molecular structure for this purpose. Their procedure was based on a dataset of more than 400,000 molecules, which they screened to find the optimum molecular structure for solar energy storage materials.
Published Exploring light neutron-rich nuclei: First observation of oxygen-28


The neutron-rich oxygen isotopes oxygen-27 and oxygen-28 exist as very short-lived resonances, report scientists based on the first observation of their decay into oxygen-24 and three and four neutrons, respectively. Notably, the oxygen-28 nucleus is found not to be 'doubly magic' as expected in the standard shell-model picture. This study provides valuable insights into the nuclear structure.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Paving the way for advanced quantum sensors


Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.
Published Brighter comb lasers on a chip mean new applications


Researchers have shown that dissipative Kerr solitons (DKSs) can be used to create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications. The advance could lead to chip-based instruments that can make precision measurements that were previously possible only in a few specialized laboratories.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Graphene: Perfection is futile


It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.