Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Physics: General, Physics: Optics
Published Imaging technique shows new details of peptide structures



Researchers outline how they used a chemical probe to light up interlocking peptides. Their technique will help scientists differentiate synthetic peptides from toxic types found in Alzheimer's disease.
Published More efficient molecular motor widens potential applications



Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.
Published Researchers advance detection of gravitational waves to study collisions of neutron stars and black holes



Researchers co-led a study that will improve the detection of gravitational waves--ripples in space and time.
Published Airborne single-photon lidar system achieves high-resolution 3D imaging



Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D images with a low-power laser. This advance could make single-photon lidar practical for air and space applications such as environmental monitoring, 3D terrain mapping and object identification.
Published Key to efficient and stable organic solar cells



A team of researchers has made a significant breakthrough in the field of organic photovoltaics.
Published Scientists tune the entanglement structure in an array of qubits



A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.
Published How light can vaporize water without the need for heat



Researchers discovered that light can cause evaporation of water from a surface without the need for heat. This 'photomolecular effect' could be important for understanding climate change and for improving some industrial processes.
Published Holographic displays offer a glimpse into an immersive future



Researchers have invented a new optical element that brings us one step closer to mixing the real and virtual worlds in an ordinary pair of eyeglasses using high-definition 3D holographic images.
Published Biophysics: Testing how well biomarkers work



Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.
Published High-resolution lidar sees birth zone of cloud droplets



Scientists demonstrated the first-ever remote observations of the fine-scale structure at the base of clouds. The results show that the air-cloud interface is a transition zone where aerosol particles suspended in Earth's atmosphere give rise to the droplets that ultimately form clouds. The research will enable scientists to gain insight into how changes in atmospheric aerosol levels could affect clouds and climate.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published A novel universal light-based technique to control valley polarization in bulk materials



Scientists report a new method that achieves for the first time valley polarization in centrosymmetric bulk materials in a non-material-specific way. This 'universal technique' may have major applications linked to the control and analysis of different properties for 2D and 3D materials, which can in turn enable the advancement of cutting-edge fields such us information processing and quantum computing.
Published Lead-vacancy centers in diamond as building blocks for large-scale quantum networks



A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.
Published Toward unification of turbulence framework -- weak-to-strong transition discovered in turbulence



Astrophysicists have made a significant step toward solving the last puzzle in magnetohydrodynamic turbulence theory by observing the weak to strong transition in the space plasma turbulence surrounding Earth with newly developed multi-spacecraft analysis methods.
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup



Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published Gentle defibrillation for the heart



Using light pulses as a model for electrical defibrillation, scientists developed a method to assess and modulate the heart function. The research team has thus paved the way for an efficient and direct treatment for cardiac arrhythmias. This may be an alternative for the strong and painful electrical shocks currently used.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published Unlocking spin current secrets: A new milestone in spintronics



Using neutron scattering and voltage measurements, a group of researchers have discovered that a material's magnetic properties can predict spin current changes with temperature. The finding is a major breakthrough in the field of spintronics.
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published Switching off the light to see better



Researchers used structured light and switchable fluorescent molecules to reduce the background light from the out-of-plane regions of microscope samples. This method allowed for the acquisition of images that surpassed the conventional resolution limit, and it may be useful for further study of cell clusters and other biological systems.