Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Environmental: Water, Physics: General
Published Building bionic jellyfish for ocean exploration



Researchers show how biohybrid robots based on jellyfish could be used to gather climate science data from deep in the Earth's oceans.
Published Better neutron mirrors can reveal the inner secrets of matter



Improved neutron mirrors can increase the efficiency of material analysis in neutron sources such as the ESS. The improved mirror has been developed by coating a silicon plate with extremely thin layers of iron and silicon mixed with boron carbide.
Published When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals



Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.
Published Lake ecosystems: Nitrogen has been underestimated



An ecological imbalance in a lake can usually be attributed to increased nutrient inputs. The result: increased phytoplankton growth, oxygen deficiency, toxic cyanobacterial blooms and fish kills. Until now, controls in lake management have focused primarily on phosphorus inputs to counteract this effect. Now, this dogma is shaken by a study showing that nitrogen is also a critical driver for phytoplankton growth in lakes worldwide.
Published 80 mph speed record for glacier fracture helps reveal the physics of ice sheet collapse



New research documents the fastest-known large-scale breakage along an Antarctic ice shelf. A 6.5-mile crack formed in 2012 over 5-and-a-half minutes, showing that ice shelves can effectively shatter -- though the speed is limited by seawater rushing in. The results help inform large-scale ice sheet models and projections of future sea level rise.
Published Older African elephants will be most severely affected by the changing climate



Older elephants in East Africa will be most severely impacted by climate change, threatening the long-term survival of this vulnerable African mammal, according to a new study.
Published Under pressure: New tool for precise measurement of superconductors



Researchers think they have a foundational tool for the thorny problem of how to measure and image the behavior of hydride superconductors at high pressure. They report creatively integrating quantum sensors into a diamond anvil cell, enabling direct readouts of the pressurized material's electrical and magnetic properties.
Published Climate change shrinking fish



Fish weight in the western North Pacific Ocean dipped in the 2010s due to warmer water limiting food supplies, according to a new study. Researchers analyzed the individual weight and overall biomass of 13 species of fish. In the 1980s and 2010s, the fish were lighter. They attributed the first period of weight loss to greater numbers of Japanese sardine, which increased competition with other species for food. During the 2010s, while the number of Japanese sardine and chub mackerel moderately increased, the effect of climate change warming the ocean appears to have resulted in more competition for food, as cooler, nutrient-dense water could not easily rise to the surface. These results have implications for fisheries and policymakers trying to manage ocean resources under future climate change scenarios.
Published Researchers develop novel method to photosynthesize hydrogen peroxide using water and air



Researchers have developed a microporous covalent organic framework with dense donor-acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide through the photosynthesis process with water and air.
Published Light stimulates a new twist for synthetic chemistry



Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.
Published Quantum films on plastic



Researchers have discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips. Bismuth combines several advantageous properties not found in other systems to date, as the team reports. Particularly: the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.
Published Want fewer microplastics in your tap water? Try boiling it first



Nano- and microplastics are seemingly everywhere -- water, soil and the air. While many creative strategies have been attempted to get rid of these plastic bits, one unexpectedly effective solution for cleaning up drinking water, specifically, might be as simple as brewing a cup of tea or coffee. Boiling and filtering calcium-containing tap water could help remove nearly 90% of the nano- and microplastics present.
Published Walleye struggle with changes to timing of spring thaw



Walleye are one of the most sought-after species in freshwater sportfishing, a delicacy on Midwestern menus and a critically important part of the culture of many Indigenous communities. They are also struggling to survive in the warming waters of the Midwestern United States and Canada. According to a new study, part of the problem is that walleye are creatures of habit, and the seasons -- especially winter -- are changing so fast that this iconic species of freshwater fish can't keep up.
Published New disease testing component facilitates lower-cost diagnostics



Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.
Published Low-Temperature Plasma used to remove E. coli from hydroponically grown crops



In a new study, a team sterilized a hydroponic nutrient solution using low-temperature plasma generated from electricity and the oxygen in the atmosphere. This new sterilization technique may allow farmers to grow crops without the use of chemical pesticides, representing an important advance in agricultural technology for sustainable crop production.
Published Diamonds are a chip's best friend



New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.
Published Trapping and excitation of the simplest molecule



The simplest possible molecule H2+ was one of the very first molecules to form in the cosmos. This makes it significant for astrophysics, but also an important object of research for fundamental physics. It is difficult to study in experiments. However, a team of physicists has now succeeded in measuring the vibrations of the molecule with a laser.
Published Researchers use Hawk supercomputer and lean into imperfection to improve solar cell efficiency



Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.
Published Scientists propose new method for tracking elusive origins of CO2 emissions from streams



A team of researchers that specializes in accounting for the carbon dioxide release by streams, rivers and lakes recently demonstrated that the chemical process known as 'carbonate buffering' can account for the majority of emissions in highly alkaline waters. Furthermore, carbonate buffering distorts the most commonly used method of tracking the origins of CO2 in streams. The research proposes a better method for tracking the origin of riverine CO2 emissions.
Published Movies of ultrafast electronic circuitry in space and time



Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.