Showing 20 articles starting at article 1201
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: General
Published Capturing carbon in savannas: New research examines role of grasses for controlling climate change


New research shows that, in addition to trees, humble grasses also play an essential role in capturing carbon.
Published Machine learning contributes to better quantum error correction


Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.
Published Researchers develop highly efficient and stable photoelectrode for water splitting using organic semiconductors


A recent study has unveiled a significant breakthrough in photoelectrode development.
Published Switching from harmful to helpful fungi



Mold and diseases caused by fungi can greatly impact the shelf life of fruit and vegetables. However, some fungi benefit their hosts by aiding plant survival. Colletotrichum tofieldiae (Ct) is a root mold which typically supports continued plant development even when the plant is starved of phosphorus, an important nutrient for photosynthesis and growth. Researchers studied a unique pathogenic strain of the fungi, called Ct3, which conversely inhibits plant growth.
Published Electrifying heavy-duty vehicles could reduce environmental inequalities


If the region surrounding Chicago -- North America's largest freight hub -- shifted just 30% of its current on-road heavy-duty vehicles to electric versions, it would substantially reduce pollution and save hundreds of lives per year, with the benefits largely concentrated in disadvantaged communities, according to a new study. The study authors highlight that neighborhoods with predominantly Black, Hispanic and Latinx residents would benefit the most -- potentially reducing disproportionate pollution and health burdens in historically marginalized areas.
Published Atomic-scale spin-optical laser: New horizon of optoelectronic devices


Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.
Published Pioneering beyond-silicon technology via residue-free field effect transistors


Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Bit by bit, microplastics from tires are polluting our waterways


Urban stormwater particles from tire wear were the most prevalent microplastic a new study has found. The study showed that in stormwater runoff during rain approximately 19 out of every 20 microplastics collected were tire wear particles with anywhere from 2 to 59 particles per liter of water. Tire rubber contains up to 2500 chemicals with the contaminants that leach from tires considered more toxic to bacteria and microalgae than other plastic polymers.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Efficient and mild: Recycling of used lithium-ion batteries


Lithium-ion batteries (LIBs) provide our portable devices like tablets and mobiles -- and increasingly also vehicles -- with power. As the share of volatile renewable energy needing electricity storage increases, more and more LIBs are needed, lithium prices rise, resources dwindle, and the amount of depleted batteries that contain toxic substances increases. Researchers introduce a novel approach for the recovery of lithium from used LIBs.
Published 3D-printed 'living material' could clean up contaminated water


A 'living material,' made of a natural polymer combined with genetically engineered bacteria, could offer a sustainable and eco-friendly solution to clean pollutants from water. Researchers developed their living material using a seaweed-based polymer and bacteria that have been programmed to produce an enzyme that transforms various organic pollutants into harmless compounds. In tests, heir material decontaminated water solutions tainted with a pollutant from textile manufacturing: indigo carmine, a blue dye that is used to color denim.
Published Blowing snow contributes to Arctic warming



Atmospheric scientists have discovered abundant fine sea salt aerosol production from wind-blown snow in the central Arctic, increasing seasonal surface warming.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published New research explains 'Atlantification' of the Arctic Ocean



New research by an international team of scientists explains what's behind a stalled trend in Arctic Ocean sea ice loss since 2007. The findings indicate that stronger declines in sea ice will occur when an atmospheric feature known as the Arctic dipole reverses itself in its recurring cycle. The many environmental responses to the Arctic dipole are described in a recent article. This analysis helps explain how North Atlantic water influences Arctic Ocean climate. Scientists call it Atlantification.
Published Toxic molds, fossil fuels, antibiotics linked to chemical intolerance



Toxic mold left behind by Hurricane Idalia could initiate chemical intolerance (CI) in some individuals, experts said. In a survey of thousands of Americans, mold exposure was the most frequently cited initiating cause of CI, according to a recently published study.
Published Newly discovered fungus helps destroy a harmful food toxin



Patulin is a harmful mycotoxin produced by fungi typically found in damaged fruits, including apples, pears, and grapes. In a recent breakthrough, researchers identified a new filamentous fungal strain that can degrade patulin by transforming it into less toxic substances. Their findings provide important insights into the degradation mechanisms for patulin found in nature, and can lead to new ways of controlling patulin toxicity in our food supplies.
Published Two out of three volcanoes are little-known. How to predict their eruptions?



What is the risk of a volcano erupting? To answer this question, scientists need information about its underlying internal structure. However, gathering this data can take several years of fieldwork, analyses and monitoring, which explains why only 30% of active volcanoes are currently well documented. A team has developed a method for rapidly obtaining valuable information. It is based on three parameters: the height of the volcano, the thickness of the layer of rock separating the volcano's reservoir from the surface, and the average chemical composition of the magma.
Published Tiny mineral inclusions picture the chemical exchange between Earth's mantle and atmosphere



Using synchrotron techniques, scientists have unveiled important information on The Great Oxidation Event by studying apatite inclusions in zircon crystals from old magmas.
Published Arctic soil methane consumption may be larger than previously thought and increases in a drier climate



A recent study finds that Arctic soil methane uptake may be larger than previously thought, and that methane uptake increases under dry conditions and with availability of labile carbon substrates.