Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: General
Published New solutions to keep drinking water safe as pesticide use skyrockets worldwide



Water scientists have proposed a more effective method of removing organic pesticides from drinking water, reducing the risk of contamination and potential health problems.
Published Mapping the world's fungi from air samples



Researchers have found that the key to a quick and cost-effective mapping of biodiversity has been right in front of our eyes all along, but at the same time invisible -- i.e., in the air that surrounds us.
Published Air pollution harms pollinators more than pests, study finds



Pollinators experienced a 39-percent decline in foraging efficiency after being exposed to elevated air pollution levels. In contrast, plant-eating aphids and other pests were not significantly impacted.
Published New study provides enhanced understanding of tropical atmospheric waves



Findings has critical implications for predicting extreme weather events such as hurricanes and heavy rainfall.
Published A breakthrough on the edge: One step closer to topological quantum computing



Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Researchers show promising material for solar energy gets its curious boost from entropy



Researchers discovered a microscopic mechanism that solves in part the outstanding performance achieved by a new class of organic semiconductors known as non-fullerene acceptors (NFAs).
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published Detecting defects in tomorrow's technology



New research offers an enhanced understanding of common defects in transition-metal dichalcogenides (TMDs) -- a potential replacement for silicon in computer chips -- and lays the foundation for etching smaller features.
Published Study reveals environmental impact of artificial sweeteners



A recently published study demonstrates how sucralose affects the behavior of cyanobacteria -- an aquatic photosynthetic bacteria -- and diatoms, microscopic algae that account for more than 30% of the primary food production in the marine food chain.
Published New extremely fast carbon storage technology



A new way to store carbon captured from the atmosphere works much faster than current methods without the harmful chemical accelerants they require.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Weaker ocean circulation could enhance carbon dioxide buildup in the atmosphere, study finds



Scientists may have to rethink the relationship between the ocean's circulation and its long-term capacity to store carbon, new research suggests. As the ocean gets weaker, it could release more carbon from the deep ocean into the atmosphere -- rather than less, as some have predicted.
Published Exploring the radiative effects of precipitation on Arctic amplification and energy budget



While, in theory, precipitation impacts the Earth's radiation budget, the radiative effects of precipitation (REP) are poorly understood and excluded from most climate models. Hence, a new study examined the role of REP in the global and regional energy budgets and hydrological cycles, finding that REP significantly contributes to temperature and precipitation variations at different geographical scales, especially in the Arctic warming. This highlights the relevance of including REP in climate modeling for improved accuracy.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published Retreating glaciers: Fungi enhance carbon storage in young Arctic soils



Melting Arctic glaciers are in rapid recession, and microscopic pioneers colonize the new exposed landscapes. Researchers revealed that yeasts play an important role in soil formation in the Arctic.
Published Scientists discover way to 'grow' sub-nanometer sized transistors



A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Machine learning could aid efforts to answer long-standing astrophysical questions



Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.