Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: General
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published Fungus breaks down ocean plastic



A fungus living in the sea can break down the plastic polyethylene, provided it has first been exposed to UV radiation from sunlight. Researchers expect that many more plastic degrading fungi are living in deeper parts of the ocean.
Published Understanding the atomic density fluctuations in silica glass



The intermediate range order of covalent glasses has been extensively studied in terms of the first sharp diffraction peak (FSDP), but the direct observation of the atomic density fluctuations that give rise to FSDP is still lacking. Addressing this gap, researchers employed a new energy-filtered angstrom-beam electron diffraction technique to provide the direct experimental observation for the origin of FSDP in silica glass, providing important insights into the atomic structure of glasses.
Published Fresh findings: Earliest evidence of life-bringing freshwater on Earth



New research has found evidence that fresh water on Earth, which is essential for life, appeared about four billion years ago -- five hundred million years earlier than previously thought.
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published Mussels downstream of wastewater treatment plant contain radium, study reports



Burrowed into streambeds and rarely moving for their decades-long lifespans, freshwater mussels are biomonitors, meaning they indicate how clean their environment is, according to researchers. As the bivalves feed on organic matter and filter the water around them, their inner tissues and hard shells begin to reflect whatever is in their environment -- including radioactive particles.
Published Fjords are effective carbon traps regardless of oxygen levels



The fjords on Sweden's west coast act as effective carbon traps regardless of whether the bottom water is oxygen-rich or not.
Published New coral disease forecasting system



Research has led to a new tool for forecasting coral disease that could help conservationists step in at the right times with key interventions. Ecological forecasts are critical tools for conserving and managing marine ecosystems, but few forecasting systems can account for the wide range of ecological complexities in near-real-time.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published People are altering decomposition rates in waterways



Humans may be accelerating the rate at which organic matter decomposes in rivers and streams on a global scale, according to a new study. That could pose a threat to biodiversity in waterways around the world and increase the amount of carbon in Earth's atmosphere, potentially exacerbating climate change. The study is the first to combine a global experiment and predictive modeling to illustrate how human impacts to waterways may contribute to the global climate crisis.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published Combining simulations and experiments to get the best out of Fe3Al



Researchers combined computer simulations and transmission electron microscopy experiments to better understand the ordering mobility and formation of microstructure domains in Fe3Al alloy. They were able to correlate structural changes with heat treatment to understand how particular mechanical behavior can be achieved. This is expected to allow the superelastic properties of Fe3Al to harnessed for the 3D printing of construction materials for absorbing seismic activity.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Antibiotic pollution disrupts the gut microbiome and blocks memory in aquatic snails



Antibiotics prevent snails from forming new memories by disrupting their gut microbiome -- the community of beneficial bacteria found in their guts.
Published Researchers expose new symbiosis origin theories, identify experimental systems for plant life



Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Graphene gets cleaned up



Engineers establish the link between oxygen and graphene quality and present an oxygen-free chemical vapor deposition method (OF-CVD) that can reproducibly create high-quality samples for large-scale production. The graphene they synthesized with their new method proved nearly identical to exfoliated samples and was capable of producing the fractional quantum Hall effect.
Published Orchids support seedlings through 'parental nurture' via shared underground fungal networks



Orchid plants nurture their seedlings via an underground fungal network, new research has revealed.
Published Biobased building materials less sustainable than concrete in South Africa, experts find



Scientists have discovered that mycelium composites, biobased materials made from fungi and agricultural residues, can have a greater environmental impact than conventional fossil-fuel-based materials due to the high amount of electricity involved in their production.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.