Showing 20 articles starting at article 801

< Previous 20 articles        Next 20 articles >

Categories: Offbeat: Plants and Animals, Physics: General

Return to the site home page

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What a '2D' quantum superfluid feels like to the touch      (via sciencedaily.com)     Original source 

Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.

Computer Science: Quantum Computers Mathematics: Statistics Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing      (via sciencedaily.com)     Original source 

Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.

Biology: Biotechnology Biology: Cell Biology Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General Offbeat: Plants and Animals
Published

Researchers engineer colloidal quasicrystals using DNA-modified building blocks      (via sciencedaily.com)     Original source 

A new study unveils a novel methodology to engineer colloidal quasicrystals using DNA-modified building blocks. The implications of this breakthrough are far-reaching, offering a potential blueprint for the controlled synthesis of other complex structures previously considered beyond reach.

Physics: General Physics: Optics
Published

Bartering light for light: Scientists discover new system to control the chaotic behavior of light      (via sciencedaily.com)     Original source 

Researchers describe a new platform for controlling the chaotic behavior of light by tailoring its scattering patterns using light itself.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Where is a sea star's head? Maybe just about everywhere      (via sciencedaily.com)     Original source 

A new study that combines genetic and molecular techniques helps solve the riddle of sea star (commonly called starfish) body plans, and how sea stars start life with bilateral body symmetry -- just like humans -- but grow up to be adults with fivefold 'pentaradial' symmetry.

Chemistry: Biochemistry Mathematics: General Offbeat: Computers and Math Offbeat: General Physics: General
Published

Reverse engineering Jackson Pollock      (via sciencedaily.com)     Original source 

Researchers combined physics and machine learning to develop a new 3D-printing technique that can quickly create complex physical patterns -- including replicating a segment of a Pollock painting -- by leveraging the same natural fluid instability that Pollock used in his work.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Ecology: Endangered Species Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

How sunflowers see the sun      (via sciencedaily.com)     Original source 

Sunflowers famously turn their faces to follow the sun as it crosses the sky. But how do sunflowers 'see' the sun to follow it? Plant biologists show that they use a different, novel mechanism from that previously thought.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Late not great -- imperfect timekeeping places significant limit on quantum computers      (via sciencedaily.com)     Original source 

Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.

Biology: Biochemistry Biology: General Biology: Marine Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

New species of mosasaur named for Norse sea serpent      (via sciencedaily.com)     Original source 

Scientists have discovered a new species of mosasaur, large, carnivorous aquatic lizards that lived during the late Cretaceous. With 'transitional' traits that place it between two well-known mosasaurs, the new species is named after a sea serpent in Norse mythology, Jormungandr, and the small North Dakota city Walhalla near to where the fossil was found.

Energy: Technology Physics: General
Published

Wireless device makes magnetism appear in non-magnetic materials      (via sciencedaily.com)     Original source 

Researchers have succeeded in bringing wireless technology to the fundamental level of magnetic devices. The emergence and control of magnetic properties in cobalt nitride layers (initially non-magnetic) by voltage, without connecting the sample to electrical wiring, represents a paradigm shift that can facilitate the creation of magnetic nanorobots for biomedicine and computing systems where basic information management processes do not require wiring.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Controlling waves in magnets with superconductors for the first time      (via sciencedaily.com)     Original source 

Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Physics: General
Published

Breakthrough synthesis method improves solar cell stability      (via sciencedaily.com)     Original source 

A new process yields 2D halide perovskite crystal layers of ideal thickness and purity through dynamic control of the crystallization process -- a key step toward ensuring device stability for optoelectronics and photovoltaics.

Chemistry: Inorganic Chemistry Physics: General
Published

New research finds stress and strain changes metal electronic structure      (via sciencedaily.com)     Original source 

New research shows that the electronic structure of metals can strongly affect their mechanical properties.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A superatomic semiconductor sets a speed record      (via sciencedaily.com)     Original source 

The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2. 

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Conduction electrons drive giant, nonlinear elastic response in Sr2RuO4      (via sciencedaily.com)     Original source 

The hardness of a material normally is set by the strength of chemical bonds between electrons of neighboring atoms, not by freely flowing conduction electrons. Now a team of scientists has shown that current-carrying electrons can make the lattice much softer than usual in the material Sr2RuO4.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Major milestone achieved in new quantum computing architecture      (via sciencedaily.com)     Original source 

Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.

Biology: Zoology Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Roosters might recognize themselves in the mirror      (via sciencedaily.com)     Original source 

Scrape, cluck, lay eggs -- that's it? Anyone involved in chicken farming knows that the animals are capable of much more. Researchers have found evidence that roosters could recognize themselves in a mirror. Whether this is successful, however, depends on the experimental conditions -- a finding that points beyond the experiment with roosters and could also be of importance for other animal species.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists simulate interacting quasiparticles in ultracold quantum gas      (via sciencedaily.com)     Original source 

In physics, quasiparticles are used to describe complex processes in solids. In ultracold quantum gases, these quasiparticles can be reproduced and studied. Now scientists have been able to observe in experiments how Fermi polarons -- a special type of quasiparticle -- can interact with each other.