Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: General
Published Investigating the interplay of folding and aggregation in supramolecular polymer systems



Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.
Published Adaptive 3D printing system to pick and place bugs and other organisms



A new adaptive 3D printing system can identify the positions of randomly distributed organisms and safely move them to specific locations for assembly.
Published Scientists harness quantum microprocessor chips for revolutionary molecular spectroscopy simulation



Engineering researchers have successfully developed a quantum microprocessor chip for molecular spectroscopy simulation of actual large-structured and complex molecules.
Published Using AI to find the polymers of the future



Finding the next groundbreaking polymer is always a challenge, but now researchers are using artificial intelligence (AI) to shape and transform the future of the field.
Published Peering into the mind of artificial intelligence to make better antibiotics



Artificial intelligence (AI) has exploded in popularity as of late. But just like a human, it's hard to read an AI model's mind. Explainable AI (XAI) could help us do just that by providing justification for a model's decisions. And now, researchers are using XAI to scrutinize predictive AI models more closely, which could help make better antibiotics.
Published Evidence stacks up for poisonous books containing toxic dyes



Some of the attractive hues of brightly colored, cloth-bound books from the Victorian era come from dyes that could pose a health risk to readers, collectors or librarians. The latest research on these 'poison books' used three techniques -- including one that hasn't previously been applied to books -- to assess dangerous dyes in a university collection and found some volumes had levels that might be unsafe.
Published Morphable materials: Researchers coax nanoparticles to reconfigure themselves



A view into how nanoscale building blocks can rearrange into different organized structures on command is now possible with an approach that combines an electron microscope, a small sample holder with microscopic channels, and computer simulations, according to a new study.
Published Researchers develop new chemical method to enhance drug discovery



Researchers developed a novel reagent that enhances the precision of drug synthesis. This innovative method introduces a new sulfur fluoride exchange (SuFEx) reagent that allows for highly controlled production of crucial sulfur-based molecules, including sulfinamides, sulfonimidamides and sulfoximines.
Published Detecting machine-generated text: An arms race with the advancements of large language models



Today, many commercial tools claim to be highly successful at detecting machine-generated text, with up to 99% accuracy, but are these claims too good to be true? RAID, the Robust AI Detection benchmark, which shows that most detectors are easily fooled, setting a new bar for AI detection to clear.
Published Versatile fluidic platform for programmable liquid processing



Society relies heavily on diverse fluidic technologies. The ability to precisely capture and release various chemical and biological fluids plays a fundamental role in many fields. A long-standing challenge is to design a platform that enables the switchable capture and release of liquids with precise spatial and temporal control and accurate volumes of the fluid. Recently, researchers have invented a new method to effectively overcome this challenge.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.
Published New technique prints metal oxide thin film circuits at room temperature



Researchers have demonstrated a technique for printing thin metal oxide films at room temperature, and have used the technique to create transparent, flexible circuits that are both robust and able to function at high temperatures.
Published Enhancing electron transfer for highly efficient upconversion OLEDs



Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.
Published Robot planning tool accounts for human carelessness



A new algorithm may make robots safer by making them more aware of human inattentiveness. In computerized simulations of packaging and assembly lines where humans and robots work together, the algorithm developed to account for human carelessness improved safety by about a maximum of 80% and efficiency by about a maximum of 38% compared to existing methods.
Published Advancing modular quantum information processing



A team of physicists envisions a modular system for scaling quantum processors with a flexible way of linking qubits over long distances to enable them to work in concert to perform quantum operations. The ability to carry out such correlated or 'entangling' operations between linked qubits is the basis of the enhanced power quantum computing holds compared with current computers.
Published New brain-computer interface allows man with ALS to 'speak' again



A new brain-computer interface translates brain signals into speech with up to 97 percent accuracy. Researchers implanted sensors in the brain of a man with severely impaired speech due to amyotrophic lateral sclerosis (ALS). The man was able to communicate his intended speech within minutes of activating the system.
Published Scientists create material that can take the temperature of nanoscale objects



Scientists recently discovered a one-dimensional nanoscale material whose color changes as temperature changes.
Published Smart fabric converts body heat into electricity



Researchers have developed a smart fabric that can convert body heat and solar energy into electricity, potentially enabling continuous operation with no need for an external power source. Different sensors monitoring temperature, stress, and more can be integrated into the material.
Published How air-powered computers can prevent blood clots



A new, air-powered computer sets off alarms when certain medical devices fail. The invention is a more reliable and lower-cost way to help prevent blood clots and strokes -- all without electronic sensors.
Published Exploring the structures of xenon-containing crystallites



Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.