Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: General
Published A long-lasting neural probe



An interdisciplinary team of researchers has developed a soft implantable device with dozens of sensors that can record single-neuron activity in the brain stably for months.
Published Chats with AI shift attitudes on climate change, Black Lives Matter



People who were more skeptical of human-caused climate change or the Black Lives Matter movement who took part in conversation with a popular AI chatbot were disappointed with the experience but left the conversation more supportive of the scientific consensus on climate change or BLM. This is according to researchers studying how these chatbots handle interactions from people with different cultural backgrounds.
Published How to shift gears in a molecular motor



Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.
Published Polymer power: Researchers enhance the safety of lithium batteries



Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.
Published Deep learning reveals molecular secrets of explosive perchlorate salts



Perchlorate compounds are known for their explosive nature. To understand what makes these compounds so explosive, a team of researchers developed a novel deep learning-based method that analyses their crystal structure and molecular interactions to elucidate their physical properties. This novel technique avoids dangerous laboratory-based experiments and uses data to study the nature of compounds. Overall, the study marks a significant step towards data-driven and artificial intelligence-based methods for chemical research.
Published Cellular scaffolding rewired to make microscopic railways



Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.
Published Autonomous synthesis robot uses AI to speed up chemical discovery



Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.
Published Teaching nature to break human-made chemical bonds



A newly evolved enzyme could one day make silicone compounds biodegradable.
Published New method flips the script on topological physics



The branch of mathematics known as topology has become a cornerstone of modern physics thanks to the remarkable -- and above all reliable -- properties it can impart to a material or system. Unfortunately, identifying topological systems, or even designing new ones, is generally a tedious process that requires exactly matching the physical system to a mathematical model. Researchers have demonstrated a model-free method for identifying topology, enabling the discovery of new topological materials using a purely experimental approach.
Published Computer scientists invent simple method to speed cache sifting



Computer scientists have invented a highly effective, yet incredibly simple, algorithm to decide which items to toss from a web cache to make room for new ones.
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published A new design improves water decontamination via plasma jet



Two research groups design a plasma (an ionized gas) reactor maintained by microwaves that makes it possible to decontaminate waters with high concentrations of dye.
Published Misinformation and irresponsible AI -- experts forecast how technology may shape our near future



From misinformation and invisible cyber attacks, to irresponsible AI that could cause events involving multiple deaths, expert futurists have forecast how rapid technology changes may shape our world by 2040.
Published What coffee with cream can teach us about quantum physics



A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published Hacking DNA to make next-gen materials



Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.
Published Offshore wind farms are vulnerable to cyberattacks



Researchers have presented a new study on cyberattack risks to offshore wind farms in Glasgow, United Kingdom. They looked specifically at wind farms that use voltage-source-converter high-voltage direct-current (VSC-HVDC) connections, which are rapidly becoming the most cost-effective solution to harvest offshore wind energy around the world. They found that their complex, hybrid-communication architecture presents multiple access points for cyberattacks.
Published Research of water droplet interfaces that offer the secret ingredient for building life



Scientists have experimental evidence that the key step in protein formation can occur in droplets of pure water.
Published New research guides mathematical model-building for gene regulatory networks



A newly published study provides guidance for building accurate mathematical models for gene regulatory networks.
Published Manipulated hafnia paves the way for next-gen memory devices



A new study outlines progress toward making bulk ferroelectric and antiferroelectric hafnia available for use in a variety of applications, including high-performance computing.
Published New sustainable method for creating organic semiconductors



Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.