Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: General
Published Chemists, engineers craft adjustable arrays of microscopic lenses



A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.
Published Eyes may be the window to your soul, but the tongue mirrors your health



A 2000-year-old practice by Chinese herbalists -- examining the human tongue for signs of disease -- is now being embraced by computer scientists using machine learning and artificial intelligence.
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published Electron-rich metals make ceramics tough to crack



Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.
Published From square to cube: Hardware processing for AI goes 3D, boosting processing power



A breakthrough development in photonic-electronic hardware could significantly boost processing power for AI and machine learning applications. The approach uses multiple radio frequencies to encode data, enabling multiple calculations to be carried out in parallel. The method shows promise for outperforming state-of-the-art electronic processors, with further enhancements possible.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Using computer algorithms to find molecular adaptations to improve COVID-19 drugs



A new study focuses on using computer algorithms to generate adaptations to molecules in compounds for existing and potential medications that can improve those molecules' ability to bind to the main protease, a protein-based enzyme that breaks down complex proteins, in SARS-CoV-2, the virus that causes COVID-19.
Published Researchers unveil fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries



A research team has succeeded in developing a non-flammable gel polymer electrolyte (GPE) that is set to revolutionize the safety of lithium-ion batteries (LIBs) by mitigating the risks of thermal runaway and fire incidents.
Published How to build greener data centers? Scientists say crank up the heat



Colder is not always better for energy-hungry data centers, especially when it comes to their power bills. A new analysis says that keeping the centers at 41°C, or around 105°F, could save up to 56% in cooling costs worldwide. The study proposes new temperature guidelines that may help develop and manage more efficient data centers and IT servers in the future.
Published New recipe for efficient, environmentally friendly battery recycling



Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.
Published Cocoa pods -- a source of chocolate, and potentially, flame retardants



As Halloween approaches, so too does the anticipation of a trick-or-treating stash filled with fun-sized chocolate candy bars. But to satisfy our collective craving for this indulgence, millions of cocoa pods are harvested annually. While the beans and pulp go to make chocolate, their husks are thrown away. Now, researchers show that cocoa pod husks could be a useful starting material for flame retardants.
Published Decontamination method zaps pollutants from soil



A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.
Published Harnessing molecular power: Electricity generation on the nanoscale



Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.
Published Researchers develop organic nanozymes suitable for agricultural use



Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.
Published New polymer membranes, AI predictions could dramatically reduce energy, water use in oil refining



Researchers describe a new kind of polymer membrane they created that could reshape how refineries process crude oil, dramatically reducing the energy and water required while extracting even more useful materials. The team also created artificial intelligence tools to predict the performance of these kinds of membranes, which could accelerate development of new ones.
Published Physicists demonstrate powerful physics phenomenon



In a new breakthrough, researchers have used a novel technique to confirm a previously undetected physics phenomenon that could be used to improve data storage in the next generation of computer devices.
Published Novel catalyst for green production of fine chemicals and pharmaceuticals



Scientists have developed an innovative catalyst that achieves a significantly lower carbon footprint, paving the way for greener chemical and pharmaceutical manufacturing processes.
Published An electrical switch to control chemical reactions



New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society's needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group has discovered how to use an external electric field to control and accelerate a chemical reaction, like a 'switch'. This work could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.
Published Plastic production via advanced recycling lowers GHG emissions



Research reveals that recycling post-use plastic through pyrolysis can reduce GHG emissions by 18-23%. Approach can potentially enhance sustainability by minimizing waste and fossil resource reliance.