Showing 20 articles starting at article 1
Categories: Chemistry: Organic Chemistry, Computer Science: General
Published Unconventional interface superconductor could benefit quantum computing



A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'
Published Artificial intelligence improves lung cancer diagnosis



A team of researchers has created a digital pathology platform based on artificial intelligence. The platform uses new algorithms developed by the team and enables fully automated analysis of tissue sections from lung cancer patients. The platform makes it possible to analyze digitized tissue samples on the computer for lung tumors more quickly and accurately than before.
Published Toward a code-breaking quantum computer



Building on a landmark algorithm, researchers propose a way to make a smaller and more noise-tolerant quantum factoring circuit for cryptography.
Published DNA tech offers both data storage and computing functions



Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.
Published Self-improving AI method increases 3D-printing efficiency



An artificial intelligence algorithm can allow researchers to more efficiently use 3D printing to manufacture intricate structures. The development could allow for more seamless use of 3D printing for complex designs in everything from artificial organs to flexible electronics and wearable biosensors. As part of the study, the algorithm learned to identify, and then print, the best versions of kidney and prostate organ models, printing out 60 continually improving versions.
Published Catalyst for 'one-step' conversion of methane to methanol



Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.
Published Extraterrestrial chemistry with earthbound possibilities



Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.
Published First visualization of valence electrons reveals fundamental nature of chemical bonding



The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Published Quality control: Neatly arranging crystal growth to make fine thin films



Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Published Beetle that pushes dung with the help of 100 billion stars unlocks the key to better navigation systems in drones and satellites



An insect species that evolved 130 million years ago is the inspiration for a new research study to improve navigation systems in drones, robots, and orbiting satellites.
Published Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator



New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
Published Molecular wires with a twist



Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.
Published 'Molecular compass' points way to reduction of animal testing



Machine learning models have become increasingly popular for risk assessment of chemical compounds. However, they are often considered 'black boxes' due to their lack of transparency. To increase confidence in these models, researchers proposed carefully identifying the areas of chemical space where these models are weak. They developed an innovative software tool for this purpose, and the results of this research approach have just been published.
Published A new reaction to enhance aromatic ketone use in chemical synthesis



Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.
Published Investigating the interplay of folding and aggregation in supramolecular polymer systems



Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.
Published Adaptive 3D printing system to pick and place bugs and other organisms



A new adaptive 3D printing system can identify the positions of randomly distributed organisms and safely move them to specific locations for assembly.
Published Scientists harness quantum microprocessor chips for revolutionary molecular spectroscopy simulation



Engineering researchers have successfully developed a quantum microprocessor chip for molecular spectroscopy simulation of actual large-structured and complex molecules.
Published Peering into the mind of artificial intelligence to make better antibiotics



Artificial intelligence (AI) has exploded in popularity as of late. But just like a human, it's hard to read an AI model's mind. Explainable AI (XAI) could help us do just that by providing justification for a model's decisions. And now, researchers are using XAI to scrutinize predictive AI models more closely, which could help make better antibiotics.
Published Detecting machine-generated text: An arms race with the advancements of large language models



Today, many commercial tools claim to be highly successful at detecting machine-generated text, with up to 99% accuracy, but are these claims too good to be true? RAID, the Robust AI Detection benchmark, which shows that most detectors are easily fooled, setting a new bar for AI detection to clear.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.