Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Energy: Alternative Fuels
Published New twist on optical tweezers



Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy.
Published New techniques efficiently accelerate sparse tensors for massive AI models



New computational techniques, 'HighLight' and 'Tailors and Swiftiles,' could dramatically boost the speed and performance of high-performance computing applications like graph analytics or generative AI. The work, from MIT and NIVIDIA, aims to accelerate sparse tensors for AI models by introducing more efficient and flexible ways to take advantage of sparsity.
Published New database shines spotlight on decades of solar mirror research



A new database contains the results of exposure experiments on solar reflectors conducted over more than four decades. The publicly available Solar Mirror Materials Database (SMMD) will contain information from thousands of solar mirror samples from more than a hundred suppliers that have been subjected to outdoor tests and laboratory environments.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.
Published Accelerating AI tasks while preserving data security



SecureLoop is a new search engine that can identify an optimal design for a deep neural network accelerator that preserves data security while improving energy efficiency and boosting performance. This could enable device manufacturers to increase the speed of demanding AI applications, while ensuring sensitive data remain safe from attackers.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published How robots can help find the solar energy of the future



To quickly and accurately characterize prospective materials for use in solar energy, researchers built an automated system to perform laboratory experiments and used machine learning to help analyze the data they recorded. Their goal is to identify semiconductor materials for use in photovoltaic solar energy, which are highly efficient and have low toxicity.
Published How to protect biocatalysts from oxygen



There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.
Published The importance of the Earth's atmosphere in creating the large storms that affect satellite communications



Large geomagnetic storms disrupt radio signals and GPS. Now, researchers have identified the previous underestimated role of the ionosphere, a region of Earth's upper atmosphere that contains a high concentration of ions and free electrons, in determining how such storms develop. Understanding the interactions that cause large geomagnetic storms is important because they can disrupt radio signals and GPS. Their findings may help predict storms with the greatest potential consequences.
Published Novel device promotes efficient, real-time and secure wireless access



Researchers have created new technology for more accessible, real-time wireless connectivity.
Published 3D printed reactor core makes solar fuel production more efficient



Using a new 3D printing technique, researchers have developed special ceramic structures for a solar reactor. Initial experimental testing show that these structures can boost the production yield of solar fuels.
Published Certain online games use dark designs to collect player data



The privacy policies and practices of online games contain dark design patterns which could be deceptive, misleading, or coercive to users, according to a new study.
Published Controlling waves in magnets with superconductors for the first time



Quantum physicists have shown that it's possible to control and manipulate spin waves on a chip using superconductors for the first time. These tiny waves in magnets may offer an alternative to electronics in the future, interesting for energy-efficient information technology or connecting pieces in a quantum computer, for example. The breakthrough primarily gives physicists new insight into the interaction between magnets and superconductors.
Published Major milestone achieved in new quantum computing architecture



Researchers report a significant advance in quantum computing. They have prolonged the coherence time of their single-electron qubit to an impressive 0.1 milliseconds, nearly a thousand-fold improvement.
Published Energy-saving AI chip



A computer scientist has developed an AI-ready architecture that is twice as powerful as comparable in-memory computing approaches. The researcher applies a new computational paradigm using special circuits known as ferroelectric field effect transistors (FeFETs). Within a few years, this could prove useful for generative AI, deep learning algorithms and robotic applications.
Published Engineers develop breakthrough 'robot skin'



Smart, stretchable and highly sensitive, a new soft sensor opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike.
Published A potentially cheaper and 'cooler' way for hydrogen transport



Researchers have developed a new hydrogen energy carrier material capable storing hydrogen energy efficiently and potentially more cheaply. Each molecule can store one electron from hydrogen at room temperature, store it for up the three months, and can be its own catalyst to extract said electron. Moreover, as the compound is made primarily of nickel, its cost is relatively low.
Published Vision via sound for the blind



Smart glasses that use a technique similar to a bat's echolocation could help blind and low-vision people navigate their surroundings, according to researchers.
Published Scientists develop new method to create stable, efficient next-gen solar cells



Next-generation solar materials are cheaper and more sustainable to produce than traditional silicon solar cells, but hurdles remain in making the devices durable enough to withstand real-world conditions. A new technique could simplify the development of efficient and stable perovskite solar cells, named for their unique crystalline structure that excels at absorbing visible light.