Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Engineering: Robotics Research
Published Deep neural network provides robust detection of disease biomarkers in real time



A lab has developed a deep neural network that improves the accuracy of their unique devices for detecting pathogen biomarkers.
Published A touch-responsive fabric armband -- for flexible keyboards, wearable sketchpads



It's time to roll up your sleeves for the next advance in wearable technology -- a fabric armband that's actually a touch pad. Researchers say they have devised a way to make playing video games, sketching cartoons and signing documents easier. Their proof-of-concept silk armband turns a person's forearm into a keyboard or sketchpad. The three-layer, touch-responsive material interprets what a user draws or types and converts it into images on a computer.
Published Joyful music could be a game changer for virtual reality headaches



Listening to music could reduce the dizziness, nausea and headaches virtual reality users might experience after using digital devices, research suggests. Cybersickness -- a type of motion sickness from virtual reality experiences such as computer games -- significantly reduces when joyful music is part of the immersive experience, the study found. The intensity of the nausea-related symptoms of cybersickness was also found to substantially decrease with both joyful and calming music.
Published Quantum entanglement of photons doubles microscope resolution



Using a "spooky" phenomenon of quantum physics, researchers have discovered a way to double the resolution of light microscopes.
Published Sensor enables high-fidelity input from everyday objects, human body



Couches, tables, sleeves and more can turn into a high-fidelity input device for computers using a new sensing system.
Published Lithography-free photonic chip offers speed and accuracy for artificial intelligence



Researchers have created a photonic device that provides programmable on-chip information processing without lithography, offering the speed of photonics augmented by superior accuracy and flexibility for AI applications. Achieving unparalleled control of light, this device consists of spatially distributed optical gain and loss. Lasers cast light directly on a semiconductor wafer, without the need for defined lithographic pathways.
Published Brain activity decoder can reveal stories in people's minds



A new AI-based system called a semantic decoder can translate a person's brain activity -- while listening to a story or silently imagining telling a story -- into a continuous stream of text. Unlike other thought decoding systems in development, this system does not require subjects to have surgical implants, making the process noninvasive.
Published Engineers 'grow' atomically thin transistors on top of computer chips



A new method enables 2D-material semiconductor transistors to be directly integrated onto a fully fabricated 8-inch silicon wafer, which could enable a new generation of transistor technology, denser device integration, new circuit architectures, and more powerful chips.
Published Highly dexterous robot hand can operate in the dark -- just like us



Researchers demonstrated a highly dexterous robot hand, one that combines an advanced sense of touch with motor learning algorithms in order to achieve a high level of dexterity. In addition, the hand worked without any external cameras -- it's immune to lighting, occlusion, or similar issues. Because the hand doesn't rely on vision to manipulate objects, it can do so in difficult lighting conditions that would confuse vision-based algorithms -- it even operates in the dark.
Published Speedy robo-gripper reflexively organizes cluttered spaces



A new gripper robot grasps by reflex. Rather than start from scratch after a failed attempt, the bot adapts in the moment to reflexively roll, palm, or pinch an object to get a better hold.
Published How a horse whisperer can help engineers build better robots



New research shows us that age-old interactions between people and their horses can teach us something about building robots designed to improve our lives.
Published Jellyfish-like robots could one day clean up the world's oceans



Roboticists have developed a jellyfish-inspired underwater robot with which they hope one day to collect waste from the bottom of the ocean. The almost noise-free prototype can trap objects underneath its body without physical contact, thereby enabling safe interactions in delicate environments such as coral reefs. Jellyfish-Bot could become an important tool for environmental remediation.
Published Vaccine printer could help vaccines reach more people



Researchers have designed a tabletop-sized vaccine printer that could be scaled up to produce hundreds of vaccine doses in a day and deployed anywhere vaccines are needed. The vaccine doses are contained within microneedle patches that can be stored long-term at room temperature and applied to the skin, avoiding the need for injections.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published New programmable smart fabric responds to temperature and electricity



A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published Versatile, high-speed, and efficient crystal actuation with photothermally resonated natural vibrations



Mechanically responsive molecular crystals are extremely useful in soft robotics, which requires a versatile actuation technology. Crystals driven by the photothermal effect are particularly promising for achieving high-speed actuation. However, the response (bending) observed in these crystals is usually small. Now, scientists address this issue by inducing large resonated natural vibrations in anisole crystals with UV light illumination at the natural vibration frequency of the crystal.
Published Two qudits fully entangled



Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Surface steers signals for next-gen networks



5G signals known as millimeter-wave carry enormous amounts of information but are very easy to block. A new device helps these signals get around obstacles posed by walls, furniture and people.