Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Computer Science: General, Engineering: Nanotechnology
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published Researchers closing in on genetic treatments for hereditary lung disease, vision loss



Researchers who work with tiny drug carriers known as lipid nanoparticles have developed a new type of material capable of reaching the lungs and the eyes, an important step toward genetic therapy for hereditary conditions like cystic fibrosis and inherited vision loss.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published 'Like a lab in your pocket' -- new test strips raise game in gene-based diagnostics



Biosensing technology developed by engineers has made it possible to create gene test strips that rival conventional lab-based tests in quality.
Published Spontaneous curvature the key to shape-shifting nanomaterials



Inspired by nature, nanotechnology researchers have identified 'spontaneous curvature' as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Software speeds up drug development



Sugars cover nearly all proteins present at the surface of the cells in our bodies, forming a shield around the proteins. Thus, these sugars influence how cells interact with their environment including pathogens, playing an important role in medical drug development. GlycoSHIELD, a new computational approach to study the sugar shields of proteins, is resource-reducing, time-efficient and user-friendly.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Researchers use AI, Google street view to predict household energy costs on large scale



An interdisciplinary team of experts has found a way to use artificial intelligence to analyze a household's passive design characteristics and predict its energy expenses with more than 74 percent accuracy. By combining their findings with demographic data including poverty levels, the researchers have created a comprehensive model for predicting energy burden across 1,402 census tracts and nearly 300,000 households in Chicago.
Published AI technique 'decodes' microscope images, overcoming fundamental limit



Researchers have developed a deep learning algorithm for removing systematic effects from atomic force microscopy images, enabling more precise profiles of material surfaces.
Published New AI model could streamline operations in a robotic warehouse



Researchers applied deep-learning approaches from vehicle routing to streamline planning trajectories for robots in an e-commerce warehouse. Their method breaks the problem down into smaller chunks and then predicts the best chunks to solve with traditional algorithms.
Published Want fewer microplastics in your tap water? Try boiling it first



Nano- and microplastics are seemingly everywhere -- water, soil and the air. While many creative strategies have been attempted to get rid of these plastic bits, one unexpectedly effective solution for cleaning up drinking water, specifically, might be as simple as brewing a cup of tea or coffee. Boiling and filtering calcium-containing tap water could help remove nearly 90% of the nano- and microplastics present.
Published Nanocarrier with escape reflex



Protein-based drugs must be transported into cells in a way that prevents their immediate degradation. A new approach is intended to ensure that they remain intact only in certain cells, such as cancer cells. A Japanese research team has introduced a nanocarrier that can 'escape' from endosomes before its cargo is destroyed there. This ability to escape is only triggered within the endosomes of certain tumor cells.
Published New disease testing component facilitates lower-cost diagnostics



Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.
Published You may be breathing in more tiny nanoparticles from your gas stove than from car exhaust



Cooking on your gas stove can emit more nano-sized particles into the air than vehicles that run on gas or diesel, possibly increasing your risk of developing asthma or other respiratory illnesses, a new study has found.
Published Robots, monitoring and healthy ecosystems could halve pesticide use without hurting productivity



Smarter crop farming that combats weeds, insect pests and plant diseases by integrating modern technologies like AI-based monitoring, robotics, and next-generation biotechnology with healthy and resilient agricultural ecosystems.
Published Researchers harness 2D magnetic materials for energy-efficient computing



Researchers used ultrathin van der Waals materials to create an electron magnet that can be switched at room temperature. This type of magnet could be used to build magnetic processors or memories that would consume far less energy than traditional devices made from silicon.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published Method identified to double computer processing speeds



Scientists introduce what they call 'simultaneous and heterogeneous multithreading' or SHMT. This system doubles computer processing speeds with existing hardware by simultaneously using graphics processing units (GPUs), hardware accelerators for artificial intelligence (AI) and machine learning (ML), or digital signal processing units to process information.
Published New water batteries stay cool under pressure



A global team of researchers has invented recyclable 'water batteries' that won't catch fire or explode. The team use water to replace organic electrolytes -- which enable the flow of electric current between the positive and negative terminals -- meaning their batteries can't start a fire or blow up -- unlike their lithium-ion counterparts.