Showing 20 articles starting at article 1

Next 20 articles >

Categories: Chemistry: General, Computer Science: General

Return to the site home page

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional interface superconductor could benefit quantum computing      (via sciencedaily.com)     Original source 

A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'

Computer Science: Artificial Intelligence (AI) Computer Science: General Mathematics: Statistics
Published

Artificial intelligence improves lung cancer diagnosis      (via sciencedaily.com)     Original source 

A team of researchers has created a digital pathology platform based on artificial intelligence. The platform uses new algorithms developed by the team and enables fully automated analysis of tissue sections from lung cancer patients. The platform makes it possible to analyze digitized tissue samples on the computer for lung tumors more quickly and accurately than before.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

AI tackles one of the most difficult challenges in quantum chemistry      (via sciencedaily.com)     Original source 

New research using neural networks, a form of brain-inspired AI, proposes a solution to the tough challenge of modelling the states of molecules.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

DNA tech offers both data storage and computing functions      (via sciencedaily.com)     Original source 

Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.

Computer Science: General Mathematics: Modeling
Published

Self-improving AI method increases 3D-printing efficiency      (via sciencedaily.com)     Original source 

An artificial intelligence algorithm can allow researchers to more efficiently use 3D printing to manufacture intricate structures. The development could allow for more seamless use of 3D printing for complex designs in everything from artificial organs to flexible electronics and wearable biosensors. As part of the study, the algorithm learned to identify, and then print, the best versions of kidney and prostate organ models, printing out 60 continually improving versions.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Catalyst for 'one-step' conversion of methane to methanol      (via sciencedaily.com)     Original source 

Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Extraterrestrial chemistry with earthbound possibilities      (via sciencedaily.com)     Original source 

Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First visualization of valence electrons reveals fundamental nature of chemical bonding      (via sciencedaily.com)     Original source 

The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Quality control: Neatly arranging crystal growth to make fine thin films      (via sciencedaily.com)     Original source 

Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.

Chemistry: Thermodynamics Computer Science: General Energy: Nuclear Physics: General
Published

Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator      (via sciencedaily.com)     Original source 

New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Unlocking the last lanthanide      (via sciencedaily.com)     Original source 

A team of scientists was recently able to observe how promethium forms chemical bonds when placed in an aqueous solution.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

Engineered Bacteria make thermally stable plastics similar to polystyrene and PET      (via sciencedaily.com)     Original source 

Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable. Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of. The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology Physics: General
Published

Molecular wires with a twist      (via sciencedaily.com)     Original source 

Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

'Molecular compass' points way to reduction of animal testing      (via sciencedaily.com)     Original source 

Machine learning models have become increasingly popular for risk assessment of chemical compounds. However, they are often considered 'black boxes' due to their lack of transparency. To increase confidence in these models, researchers proposed carefully identifying the areas of chemical space where these models are weak. They developed an innovative software tool for this purpose, and the results of this research approach have just been published.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A new reaction to enhance aromatic ketone use in chemical synthesis      (via sciencedaily.com)     Original source 

Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.

Chemistry: General Energy: Batteries Energy: Technology
Published

Development of a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries      (via sciencedaily.com)     Original source 

Scientists have developed a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries by applying machine learning methods to battery performance data. The model proved able to accurately estimate batteries' longevity by analyzing their charge, discharge and voltage relaxation process data without relying on any assumption about specific battery degradation mechanisms. The technique is expected to be useful in improving the safety and reliability of devices powered by lithium-metal batteries.