Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Computer Science: General
Published How risk-averse are humans when interacting with robots?



How do people like to interact with robots when navigating a crowded environment? And what algorithms should roboticists use to program robots to interact with humans? These are the questions that a team of mechanical engineers and computer scientists sought to answer in a recent study.
Published Bacteria form glasslike state



Dense E.coli bacteria have several similar qualities to colloidal glass. Colloids are substances made up of small particles suspended within a fluid, like ink for example. When these particles become higher in density and more packed together, they form a 'glassy state.' When researchers multiplied E.coli bacteria within a confined area, they found that they exhibited similar characteristics. More surprisingly, they also showed some other unique properties not typically found in glass-state materials. This study contributes to our understanding of glassy 'active matter,' a relatively new field of materials research which crosses physics and life science. In the long term, the researchers hope that these results will contribute to developing materials with new functional capabilities, as well as aiding our understanding of biofilms (where microorganisms stick together to form layers on surfaces) and natural bacterial colonies.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published A new material derived from graphene improves the performance of neuroprostheses



Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.
Published Researchers introduce generative AI for databases



Researchers have developed an easy-to-use tool that enables someone to perform complicated statistical analyses on tabular data using just a few keystrokes. Their method combines probabilistic AI models with the programming language SQL to provide faster and more accurate results than other methods.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Implantable LED device uses light to treat deep-seated cancers



Certain types of light have proven to be an effective, minimally invasive treatment for cancers located on or near the skin when combined with a light-activated drug. But deep-seated cancers have been beyond the reach of light's therapeutic effects. To change this, engineers and scientists have devised a wireless LED device that can be implanted. This device, when combined with a light-sensitive dye, not only destroys cancer cells, but also mobilizes the immune system's cancer-targeting response.
Published Progress in development of a new high-tech kidney disease urine test



Development of a new way to accurately measure human serum albumin (HSA) levels in people with chronic kidney disease has progressed in recent testing.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published Detecting defects in tomorrow's technology



New research offers an enhanced understanding of common defects in transition-metal dichalcogenides (TMDs) -- a potential replacement for silicon in computer chips -- and lays the foundation for etching smaller features.
Published It takes a cool microscope and antifreeze to really look at ice



Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.
Published Diagnosing different forms of dementia now possible using artificial intelligence



Ten million new cases of dementia are diagnosed each year but the presence of different dementia forms and overlapping symptoms can complicate diagnosis and delivery of effective treatments. Now researchers have developed an AI tool that can diagnose ten different types of dementia such as vascular dementia, Lewy body dementia, and frontotemporal dementia, even if they co-occur.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.
Published New bio-based tool quickly detects concerning coronavirus variants



Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.
Published Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells



Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications



A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.
Published A breakthrough in inexpensive, clean, fast-charging batteries



Scientists have created an anode-free sodium solid-state battery. This brings the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.