Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: Encryption
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Transforming waste carbon dioxide into high-value chemicals with a cost reduction of about 30%



A team of scientists has developed a novel technique to convert carbon dioxide (CO2) from treated flue gas directly into high-value chemicals and fuels. This innovation sidesteps the conventional approach of using high-purity CO2 for electrochemical reduction processes, achieving significant cost savings of about 30%.
Published Exploring interface phenomena for more durable and effective nickel--tungsten alloys



The insights into the formation of various phases, including intermetallic compounds, at the interface between nickel (Ni) and tungsten (W) can lead to the development of advanced high-temperature Ni--W coatings. Their study sheds light on the formation of intercrystallite regions and Kirkendall voids, which can be leveraged to improve the durability and effectiveness of the alloys.
Published Manganese sprinkled with iridium: a quantum leap in green hydrogen production



Researchers report a new method that reduces the amount of iridium needed to produce hydrogen from water by 95%, without altering the rate of hydrogen production. This breakthrough could revolutionize our ability to produce ecologically friendly hydrogen and help usher in a carbon-neutral hydrogen economy.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published Getting dirty to clean up the chemical industry's environmental impact



The global chemical industry is a major fossil fuel consumer and climate change contributor; however, new research has identified how the sector could clean up its green credentials by getting dirty.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published Chemists produce new-to-nature enzyme containing boron



Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.
Published An AI leap into chemical synthesis



Scientists introduce a large language model-based AI system that revolutionizes chemistry by integrating 18 advanced tools for tasks like organic synthesis and drug discovery.
Published Bio-inspired materials' potential for efficient mass transfer boosted by a new twist on a century-old theory



The natural vein structure found within leaves -- which has inspired the structural design of porous materials that can maximize mass transfer -- could unlock improvements in energy storage, catalysis, and sensing thanks to a new twist on a century-old biophysical law.
Published The Clues for Cleaner Water



By using experimental electrochemical analyses, mass spectrometry, and computational quantum chemistry modeling, the researchers created an 'atomic-scale storyline' to explain how ozone is generated on NATO electrocatalysts. They identified that some of the nickel in NATO is probably leaching out of the electrodes via corrosion, and these nickel atoms, now floating in the solution near the catalyst, can promote chemical reactions that eventually generate ozone.
Published High-pressure spectroscopy: Why 3,000 bars are needed to take a comprehensive look at a protein



Why 3,000 bars are needed to take a comprehensive look at a protein: Researchers present a new high-pressure spectroscopy method to unravel the properties of proteins' native structures.
Published VR may pose privacy risks for kids: A new study finds parents aren't as worried as they should be



New research finds that, while an increasing number of minors are using virtual reality (VR) apps, not many parents recognize the extent of the security and privacy risks that are specific to VR technologies. The study also found that few parents are taking active steps to address those security and privacy issues, such as using parental controls built into the apps.
Published New eco-friendly lubricant additives protect turbine equipment, waterways



Scientists have developed lubricant additives that protect both water turbine equipment and the surrounding environment.
Published Path to easier recycling of solar modules



The use of femtosecond lasers to form glass-to-glass welds for solar modules would make the panels easier to recycle, according to a proof-of-concept study.
Published Sugar-based catalyst upcycles carbon dioxide



New catalyst is made from an inexpensive, abundant metal and table sugar. Catalyst converts carbon dioxide (CO2) into carbon monoxide, a building block for producing a variety of useful chemicals including syngas. With recent advances in carbon capture technologies, post-combustion carbon capture is becoming a plausible option to help tackle the global climate change crisis. But how to handle the captured carbon remains an open-ended question. The new catalyst potentially could provide one solution for disposing the potent greenhouse gas by converting it into a more valuable product.
Published New approach in the synthesis of complex natural substances



Many natural substances possess interesting characteristics, and can form the basis of new active compounds in medicine. Terpenes, for example, are a group of substances, some of which are already used in therapies against cancer, malaria or epilepsy. They are found as fragrances in cosmetics or as flavorings in food, and form the basis of new medications: Terpenes are natural substances that occur in plants, insects and sea sponges. They are difficult to produce synthetically. However, chemists are now introducing a new method of synthesis.
Published Researchers create new chemical compound to solve 120-year-old problem



Chemists have created a highly reactive chemical compound that has eluded scientists for more than 120 years. The discovery could lead to new drug treatments, safer agricultural products, and better electronics.
Published Scientists solve chemical mystery at the interface of biology and technology



Organic electrochemical transistors (OECTs) allow current to flow in devices like implantable biosensors. But scientists long knew about a quirk of OECTs that no one could explain: When an OECT is switched on, there is a lag before current reaches the desired operational level. When switched off, there is no lag. Current drops immediately. Researchers report that they have discovered the reason for this activation lag, and in the process are paving the way to custom-tailored OECTs for a growing list of applications in biosensing, brain-inspired computation and beyond.
Published When does a conductor not conduct?



A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.