Showing 20 articles starting at article 961
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Computer Science: Artificial Intelligence (AI)
Published Resilient bug-sized robots keep flying even after wing damage


Researchers have developed resilient artificial muscles that can enable insect-scale aerial robots to effectively recover flight performance after suffering severe damage.
Published Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots


The Walking Oligomeric Robotic Mobility System, or WORMS, is a reconfigurable, modular, multiagent robotics architecture for extreme lunar terrain mobility. The system could be used to assemble autonomous worm-like parts into larger biomimetic robots that could explore lava tubes, steep slopes, and the moon's permanently shadowed regions.
Published Robots can help improve mental wellbeing at work -- as long as they look right


Robots can be useful as mental wellbeing coaches in the workplace -- but perception of their effectiveness depends in large part on what the robot looks like.
Published Researcher solves nearly 60-year-old game theory dilemma


A researcher has solved a nearly 60-year-old game theory dilemma called the wall pursuit game, with implications for better reasoning about autonomous systems such as driver-less vehicles.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Spatial patterns in distribution of galaxies


In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.
Published Researchers develop soft robot that shifts from land to sea with ease


Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.
Published Observations open door to improved luminous efficiency of organic LEDs


Scientists succeeded in directly observing how LECs -- which are attracting attention as one of the post-organic LEDs -- change their electronic state over time during field emission by measuring their optical absorption via lamp light irradiation for the first time. This research method can be applied to all light-emitting devices, including not only LECs but also organic LEDs. This method is expected to reveal detailed electroluminescence processes and lead to the early detection of factors that reduce the efficiency of electroluminescence.
Published Scientists transform algae into unique functional perovskites with tunable properties


Scientists have transformed single-cell algae into functional perovskite materials. The team has converted mineral shells of algae into lead halide perovskites with tunable physical properties. The new perovskites have unique nano-architectures unachievable by conventional synthetic production. The method can be applied to the mass production of perovskites with tunable structural and electro-optical properties from single-celled organisms.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Thermal conductivity of metal organic frameworks


Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Scientists identify substance that may have sparked life on Earth


A team of scientists dedicated to pinpointing the primordial origins of metabolism -- a set of core chemical reactions that first powered life on Earth -- has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.
Published Customizing catalysts for solid-state reactions


A newly developed molecular catalyst specifically tailored for mechanochemical reaction conditions enables high-efficiency transformations at near room temperature.
Published Researchers find access to new fluorescent materials


Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.
Published Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures


Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.
Published Knots smaller than human hair make materials unusually tough


A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.
Published Deconstructing tough, woody lignin


It's a tough job, but someone's got to do it. In this case, the 'job' is the breakdown of lignin, the structural biopolymer that gives stems, bark and branches their signature woodiness. One of the most abundant terrestrial polymers on Earth, lignin surrounds valuable plant fibers and other molecules that could be converted into biofuels and other commodity chemicals -- if we could only get past that rigid plant cell wall.
Published New biosensor reveals activity of elusive metal that's essential for life


A new biosensor offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.
Published A safe synthesis of hydrogen peroxide inspired by nature


Scientists report the safe synthesis of hydrogen peroxide (H2O2), an oxidizing agent used in multiple industries including semiconductors, using a new rhodium-based catalyst. The catalyst is based on natural enzymes found in extremophile microorganisms, and the reaction meets three chemical ideals for H2O2 production: safe, use of a single vessel, and direct synthesis.