Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Artificial Intelligence (AI), Physics: Optics
Published Chatbot Iris offers students individual support



Researchers have developed the chatbot Iris, which offers informatics students personalized assistance with programming assignments. A study has now confirmed the chatbot's success: Iris improves the understanding of programming concepts and represents a valuable complement to human tutors.
Published Scientists develop new artificial intelligence method to create material 'fingerprints'



Researchers have developed a new technique that pairs artificial intelligence and X-ray science.
Published Immune system in the spotlight



Our immune system is always on alert, detecting and eliminating pathogens and cancer cells. Cellular control mechanisms cause diseased cells to present antigens on their surface like signs for the immune system. For analysis of the necessary complex antigen processing and transport processes in real time, researchers have developed a 'cage' that is opened with light to release trapped antigens at a specific place and time.
Published AI found to boost individual creativity -- at the expense of less varied content



A new study finds that AI enhances creativity by boosting the novelty of story ideas as well as the 'usefulness' of stories -- their ability to engage the target audience and potential for publication. However, AI was not judged to enhance the work produced by more creative writers and the study also warns that while AI may enhance individual creativity it may also result in a loss of collective novelty, as AI-assisted stories were found to contain more similarities to each other and were less varied and diverse.
Published Microbeads with adaptable fluorescent colors from visible light to near-infrared



Researchers have successfully developed an environmentally friendly, microspherical fluorescent material primarily made from citric acid. These microbeads emit various colors of light depending on the illuminating light and the size of the beads, which suggests a wide range of applications. Furthermore, the use of plant-derived materials allows for low-cost and energy-efficient synthesis.
Published Neural networks made of light



Scientists propose a new way of implementing a neural network with an optical system which could make machine learning more sustainable in the future. In a new paper, the researchers have demonstrated a method much simpler than previous approaches.
Published Light-induced Meissner effect



Researchers have developed a new experiment capable of monitoring the magnetic properties of superconductors at very fast speeds.
Published Learning dance moves could help humanoid robots work better with humans



Engineers have trained a humanoid robot to perform a variety of expressive movements, from simple dance routines to gestures like waving, high-fiving and hugging, all while maintaining a steady gait on diverse terrains. This work marks a step towards building robots that perform more complex and human-like motions.
Published How risk-averse are humans when interacting with robots?



How do people like to interact with robots when navigating a crowded environment? And what algorithms should roboticists use to program robots to interact with humans? These are the questions that a team of mechanical engineers and computer scientists sought to answer in a recent study.
Published AI Chatbots have shown they have an 'empathy gap' that children are likely to miss



Artificial intelligence (AI) chatbots have frequently shown signs of an 'empathy gap' that puts young users at risk of distress or harm, raising the urgent need for 'child-safe AI', according to a new study. The research urges developers and policy actors to prioritize AI design that take greater account of children's needs. It provides evidence that children are particularly susceptible to treating chatbots as lifelike, quasi-human confidantes, and that their interactions with the technology can go awry when it fails to respond to their unique needs and vulnerabilities. The study links that gap in understanding to recent reports of cases in which interactions with AI led to potentially dangerous situations for young users.
Published High-speed electron camera uncovers a new 'light-twisting' behavior in an ultrathin material



Using an instrument for ultrafast electron diffraction (MeV-UED), researchers discovered how an ultrathin material can circularly polarize light. This discovery sets up a promising approach to manipulate light for applications in optoelectronic devices.
Published A new twist on artificial 'muscles' for safer, softer robots



Engineers have developed a new soft, flexible device that makes robots move by expanding and contracting -- just like a human muscle. To demonstrate their new device, called an actuator, the researchers used it to create a cylindrical, worm-like soft robot and an artificial bicep. In experiments, the cylindrical soft robot navigated the tight, hairpin curves of a narrow pipe-like environment, and the bicep was able to lift a 500-gram weight 5,000 times in a row without failing.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Implantable LED device uses light to treat deep-seated cancers



Certain types of light have proven to be an effective, minimally invasive treatment for cancers located on or near the skin when combined with a light-activated drug. But deep-seated cancers have been beyond the reach of light's therapeutic effects. To change this, engineers and scientists have devised a wireless LED device that can be implanted. This device, when combined with a light-sensitive dye, not only destroys cancer cells, but also mobilizes the immune system's cancer-targeting response.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Precise and less expensive 3D printing of complex, high-resolution structures



Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications, from consumer electronics to the biomedical field.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.