Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Self-folding origami machines powered by chemical reaction      (via sciencedaily.com)     Original source 

Scientists have harnessed chemical reactions to make microscale origami machines self-fold -- freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Better understanding soft material behavior      (via sciencedaily.com)     Original source 

The mechanics behind the collapse of soft materials structure have befuddled researchers for decades. In a new study, researchers uncover a metric that finally correlates microscopic-level processes with what is seen at the macroscopic level.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Previously unknown intercellular electricity may power biology      (via sciencedaily.com)     Original source 

Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry. It could also provide a clue as to how the first life on Earth harnessed the energy needed to arise.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Engineers 'grow' atomically thin transistors on top of computer chips      (via sciencedaily.com)     Original source 

A new method enables 2D-material semiconductor transistors to be directly integrated onto a fully fabricated 8-inch silicon wafer, which could enable a new generation of transistor technology, denser device integration, new circuit architectures, and more powerful chips.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Highly dexterous robot hand can operate in the dark -- just like us      (via sciencedaily.com)     Original source 

Researchers demonstrated a highly dexterous robot hand, one that combines an advanced sense of touch with motor learning algorithms in order to achieve a high level of dexterity. In addition, the hand worked without any external cameras -- it's immune to lighting, occlusion, or similar issues. Because the hand doesn't rely on vision to manipulate objects, it can do so in difficult lighting conditions that would confuse vision-based algorithms -- it even operates in the dark.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Pulling the plug on viral infections: CRISPR isn't just about cutting      (via sciencedaily.com)     Original source 

CRISPR claimed scientific fame for its ability to quickly and accurately edit genes. But, at the core, CRISPR systems are immune systems that help bacteria protect themselves from viruses. A new study reveals a previously unrecognized player in one such system -- a membrane protein that enhances anti-viral defense. According to study authors, the finding upends the idea that CRISPR systems mount their defense only by degrading RNA and DNA in cells.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Speedy robo-gripper reflexively organizes cluttered spaces      (via sciencedaily.com)     Original source 

A new gripper robot grasps by reflex. Rather than start from scratch after a failed attempt, the bot adapts in the moment to reflexively roll, palm, or pinch an object to get a better hold.

Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Using microbes to get more out of mining waste      (via sciencedaily.com)     Original source 

Researchers have developed a new mining technique which uses microbes to recover metals and store carbon in the waste produced by mining. Adopting this technique of reusing mining waste, called tailings, could transform the mining industry and create a greener and more sustainable future.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

How spheres become worms      (via sciencedaily.com)     Original source 

A previously unknown form of hydrogel formation has been elucidated: chemists found unusual interactions between polymers.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Chemists tackle the tough challenge of recycling mixed plastics      (via sciencedaily.com)     Original source 

Polymer chemists have been finding ways to tackle the environmental problems humans have created with plastics waste. Now, a team has come up with fundamental new chemistry that seeds a creative solution to the challenge of recycling mixed-use plastics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New chemistry can extract virgin-grade materials from wind turbine blades in one process      (via sciencedaily.com)     Original source 

Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

CO2 recycling: What is the role of the electrolyte?      (via sciencedaily.com)     Original source 

The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.

Biology: General Biology: Marine Computer Science: Artificial Intelligence (AI) Ecology: Sea Life Engineering: Robotics Research Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Offbeat: Computers and Math Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Jellyfish-like robots could one day clean up the world's oceans      (via sciencedaily.com)     Original source 

Roboticists have developed a jellyfish-inspired underwater robot with which they hope one day to collect waste from the bottom of the ocean. The almost noise-free prototype can trap objects underneath its body without physical contact, thereby enabling safe interactions in delicate environments such as coral reefs. Jellyfish-Bot could become an important tool for environmental remediation.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers team up with national lab for innovative look at copper reactions      (via sciencedaily.com)     Original source 

Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Greener batteries      (via sciencedaily.com)     Original source 

Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General
Published

Synthetic biology meets fashion in engineered silk      (via sciencedaily.com)     Original source 

Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.

Computer Science: Artificial Intelligence (AI) Mathematics: General Offbeat: Computers and Math Offbeat: General
Published

ChatGPT is still no match for humans when it comes to accounting      (via sciencedaily.com)     Original source 

ChatGPT faced off against students on accounting assessments. Students scored an overall average of 76.7%, compared to ChatGPT's score of 47.4%. On a 11.3% of questions, ChatGPT scored higher than the student average, doing particularly well on AIS and auditing. But the AI bot did worse on tax, financial, and managerial assessments, possibly because ChatGPT struggled with the mathematical processes required for the latter type.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Two qudits fully entangled      (via sciencedaily.com)     Original source 

Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.